
ORNL is managed by UT-Battelle LLC for the US Department of Energy

CFD Simulations with Panzer

Trilinos User-Developer Group Meeting 2023

Steven Hamilton (ORNL)
Stuart Slattery (ORNL)
Taylor Erwin (ORNL)
Roger Pawlowski (SNL)
Bryan Reuter (SNL)



22

Outline

• Overview and code summary
• Optimizing GPU Jacobian construction
• Linear solvers and preconditioning
• Conclusions and wishlist



33

Overview

• 2D/3D time-dependent, unstructured mesh compressible Navier-Stokes
– Cartesian and RZ coordinate systems

• Continuous finite element
– SUPG and entropy viscosity stabilization

• Multithreaded CPU and GPU (Nvidia and AMD) are all important

• Heavily built on Trilinos framework
– Panzer/Phalanx packages for finite element construction
– Tempus for time integration
– NOX for nonlinear solvers
– Epetra/Tpetra for parallel linear algebra 
– Stratimikos for linear solver construction (many packages underneath)
– Sacado for automatic differentiation
– Kokkos for performance portability



44

Flow around cylinder in tunnel



55

Jacobian matrix construction

• Automatic differentiation allows analytic Jacobians to be 
computed for use with Newton’s method
– No hand derivation
– No finite difference approximations
– Only requires function (residual) evaluation

• Sacado package provides AD types
– C++ templates allow single function implementation for either standard 

floating point or AD types
– Kokkos support allows AD operations to be performed on GPUs



66

AD Jacobian on GPUs

• Initial CUDA port showed huge bottleneck in Jacobian 
construction

• Profiling turned up several hot spots
– Teuchos stacked timer is awesome!

CPU profile GPU profile



77

Primary culprit: memory management

• Objects in the Panzer evaluator graph are templated to 
evaluation type
– scalar_type is double when evaluating the residual
– scalar_type is AD type when computing the Jacobian

• Developers are in the habit of treating scalar_type like POD
– Standard math operations are overloaded
– Generally works fine on the CPU

• Panzer uses Sacado::DFad<double>
– Derivative dimension is not known at compile time
– Thread-local scalars may trigger on-device memory allocations



88

Basic evaluator

• Consider simple evaluator with dependent (input) and 
evaluated (output) fields

Perfectly reasonable if scalar_type is double

template<class EvalType, class Traits>

void MyEvaluator<EvalType, Traits>::operator()(

const Kokkos::TeamPolicy<PHX::exec_space>::member_type& team) const

{

int cell = team.league_rank();

int num_points = _input1.extent(1);

Kokkos::parallel_for(

Kokkos::TeamThreadRange(team, 0, num_points), [&](const int point)

{

// Extract input data
scalar type in1 = _input1(cell, point);

scalar type in2 = _input2(cell, point);

// Perform local manipulations
scalar type tmp = in1 * in1 + in2 * in2;

// Compute properties from data
_output1(cell, point) = _properties.compute_out1(in1);

_output2(cell, point) = _properties.compute_out2(in1, in2);

_output3(cell, point) = _properties.compute_out3(tmp);

}

}



99

Basic evaluator

• Consider simple evaluator with dependent (input) and 
evaluated (output) fields

For Sacado::DFad, these are dynamic memory allocations!!!

template<class EvalType, class Traits>

void MyEvaluator<EvalType, Traits>::operator()(

const Kokkos::TeamPolicy<PHX::exec_space>::member_type& team) const

{

int cell = team.league_rank();

int num_points = _input1.extent(1);

Kokkos::parallel_for(

Kokkos::TeamThreadRange(team, 0, num_points), [&](const int point)

{

// Extract input data
scalar type in1 = _input1(cell, point);

scalar type in2 = _input2(cell, point);

// Perform local manipulations
scalar type tmp = in1 * in1 + in2 * in2;

// Compute properties from data
_output1(cell, point) = _properties.compute_out1(in1);

_output2(cell, point) = _properties.compute_out2(in1, in2);

_output3(cell, point) = _properties.compute_out3(tmp);

}

}



1010

Basic evaluator

• Consider simple evaluator with dependent (input) and 
evaluated (output) fields

Using auto will “do the right thing”

template<class EvalType, class Traits>

void MyEvaluator<EvalType, Traits>::operator()(

const Kokkos::TeamPolicy<PHX::exec_space>::member_type& team) const

{

int cell = team.league_rank();

int num_points = _input1.extent(1);

Kokkos::parallel_for(

Kokkos::TeamThreadRange(team, 0, num_points), [&](const int point)

{

// Extract input data
auto in1 = _input1(cell, point);

auto in2 = _input2(cell, point);

// Perform local manipulations
auto tmp = in1 * in1 + in2 * in2;

// Compute properties from data
_output1(cell, point) = _properties.compute_out1(in1);

_output2(cell, point) = _properties.compute_out2(in1, in2);

_output3(cell, point) = _properties.compute_out3(tmp);

}

}



1111

Handling thread-local operations

• What if we want to perform extra operations on thread-locals?
– Using auto doesn’t work anymore

template<class EvalType, class Traits>

void MyEvaluator<EvalType, Traits>::operator()(

const Kokkos::TeamPolicy<PHX::exec_space>::member_type& team) const

{

int cell = team.league_rank();

int num_points = _input1.extent(1);

Kokkos::parallel_for(

Kokkos::TeamThreadRange(team, 0, num_points), [&](const int point)

{

// Extract input data
auto in1 = _input1(cell, point);

auto in2 = _input2(cell, point);

scalar_type tmp = in1 * in1;

if (some_condition)

tmp += in2 * in2;

// Compute properties from data
_output1(cell, point) = _properties.compute_out(tmp);

}

}



1212

Handling thread-local operations

• Create Kokkos::View for storing temporary values
– Must be preallocated before kernel launch for all threads

template<class EvalType, class Traits>

void MyEvaluator<EvalType, Traits>::operator()(

const Kokkos::TeamPolicy<PHX::exec_space>::member_type& team) const

{

int cell = team.league_rank();

int num_points = _input1.extent(1);

Kokkos::parallel_for(

Kokkos::TeamThreadRange(team, 0, num_points), [&](const int point)

{

// Extract input data
auto in1 = _input1(cell, point);

auto in2 = _input2(cell, point);

auto&& tmp = temporary(cell, point);

tmp = in1 * in1;

if (some_condition)

tmp += in2 * in2;

// Compute properties from data
_output1(cell, point) = _properties.compute_out(tmp);

}

}



1313

Returning values from a method

• What should return type be?

struct Properties

{

template<typename T1, typename T2>

KOKKOS_INLINE_FUNCTION

xxx compute_out(const T1& in1, const T2& in2) const

{

return a * in1 + b * in2;

}

};



1414

Returning values from a method

• What should return type be?

• Possibilities:
– scalar_type: same issues as thread local variables
– Sacado::Promote<T1, T2>: essentially the same thing
– auto: Segfault on CPU (performant with CUDA!)

struct Properties

{

template<typename T1, typename T2>

KOKKOS_INLINE_FUNCTION

xxx compute_out(const T1& in1, const T2& in2) const

{

return a * in1 + b * in2;

}

};



1515

Returning values from a method

• Our solution: move return value to function argument

• The universal reference (&&) is important!
– Allows correct behavior for both POD and AD types

struct Properties

{

template<typename T1, typename T2, typename T3>

KOKKOS_INLINE_FUNCTION

void compute_out(const T1& in1, const T2& in2, T3&& out) const

{

out = a * in1 + b * in2;

}

};



1616

Returning values, again

• What if you really want to return values from a function?
– Converting return value to function argument may reduce readability
– Can’t “chain” operations together

• Solution: Create your own Sacado expression
– Explicitly implement derivative terms rather than relying on Sacado to 

propagate



1717

Use case: smooth math operations

• Non-smooth math operations can be replaced with 
differentiable approximations

• As before, return forces memory allocation if T is an AD type
– Ideally, we should be able to use this as:

out = a * smooth_abs(x, tol) + b;

template<typename T>

KOKKOS_INLINE_FUNCTION

scalar_type smooth_abs(const T& x, double tol)

{

if (x >= tol)

return x;

else if (x <= -tol)

return -x;

else

return 0.5 * (x * x / tol + tol);

}



1818

User-defined Sacado expression

• This is not a complete example!
– Additional templating and traits 

specializations required

• Multi-parameter cases are much 
more complicated
– Mixing AD and POD types

template<typename T>

class SmoothAbsOp

{

public:

SmoothAbsOp(const T& x, double tol)

: x_(x)

, tol_(tol)

{}

value_type val() const

{

if (x_ >= tol_)

return x_.val();

else if (x_ <= -tol)

return -x_.val();

else

return 0.5 * (x_.val() * x_.val() / tol_ + tol_);

}

value_type dx(int i) const

{

if (x_ >= tol_)

return x_.dx(i);

else if (x_ <= -tol)

return -x_.dx(i)

else

return x_.val() * x_.dx(i) / tol_;

}

private:

const T& x_;

double tol_;

};

template<typename T>

SmoothAbsOp<Sacado::Expr<T>> smooth_abs(const Sacado::Expr<T>& x, double tol)

{

return SmoothAbsOp<Sacado::Expr<T>>(x, tol);

}



1919

Hierarchical parallelism

• With Kokkos, Sacado can use derivative dimension for 
parallelism
– Maps to vector unit (CUDA warp)
– Automatically embedded in AD operations

• Panzer hierarchical parallelism (Kokkos::TeamPolicy) reserves 
vector unit for Sacado derivative dimension
– Sacado parallelism not enabled by default!
– Need configure option “-D Sacado_ENABLE_HIERARCHICAL_DFAD=ON”

• Only single thread per warp was active in hierarchical kernels
– Not caught initially due to other performance issues



2020

Performance results
• Optimizations in Jacobian construction have made significant difference 

on GPU
– Gas properties kernel is 400x faster on GPU, 1.15x faster on CPU
– Scatter operation in Tpetra::CrsMatrix has become bottleneck

Original timing breakdown Updated timing breakdown



2121

Solver hierarchy

• Newton’s method used as nonlinear solve
– One or more nonlinear solves per time step
– Typically 3-5 nonlinear iterations per nonlinear solve
– One linear solve per nonlinear iteration
– Anderson acceleration is also viable option through Trilinos NOX 

interface, but not yet evaluated

• GMRES used almost exclusively as linear solver
– Unpreconditioned GMRES fails even for trivial problems
– Restarting is very ineffective – large subspace size potentially needed



2222

Preconditioner selection

• Availability of Jacobian matrix has led to focus on algebraic 
preconditioners
– Physics-based preconditioning is an area for future consideration

• Algebraic multigrid approaches fail for all but simplest cases
– ML, MueLu, BoomerAMG, and AMGCL have all been evaluated

• Additive Schwarz style preconditioners have shown significant 
promise
– Small inter-block overlap improves robustness and parallel scalability
– Both incomplete factorizations and sparse direct solvers have potential 

for local block solves



2323

Solver performance
• MPI only (1 thread per rank), 2x 64-core AMD CPUs
• Global matrix size: 120k spatial elements, 600k DOFs



2424

GPU local block solvers
• CuSOLVER

– Nvidia GPUs only
– GPU-based QR factorization
– RF solver requires one-time host factorization with on-GPU refactorization
– Undocumented GLU solver provides optimized alternative to RF

• Also requires initial host factorization

• SuperLU-Dist
– GPU kernel under active development
– Provides distributed-memory parallel sparse direct solves

• Trilinos Tacho
– Recent introduction
– Implemented using Kokkos

• Pardiso
– Non-free distribution

• Ginkgo
– Only ILU factorizations?

Not yet evaluated



2525

Sparse direct solver GPU (V100) performance

• cuSOLVER GLU provides best factorization performance
– One-time CPU setup expected to be amortized across multiple solves

• Trilinos Tacho solver has best triangular solve performance

Factorization time Solve time



2626

Preconditioner reuse
• Jacobian matrix frequently changes slowly for many problems

– Repeating factorization for preconditioner every Newton iteration, every time step is overkill

• Selecting factorization frequency not available with Trilinos preconditioners

• Reducing to one factorization per time step has no impact on solver convergence!

• Actual behavior expected to be highly problem dependent
– Automatically determine when to refactor?

<latexit sha1_base64="sCYTHGp3uNtvGWTajxXDJXBBv0s=">AAAEBnicdZNLb9NAEMedhEcJrxaOXFYUULlYdhI7ya0ClSJUoNCmrVRH1XozSVZd75rddVGwcufTcEOckPgafBvGTvpK6UrWjGf2tzOe/TtOBTfW8/5WqrUbN2/dXrpTv3vv/oOHyyuP9ozKNIMeU0Lpg5gaEFxCz3Ir4CDVQJNYwH58/LrI75+ANlzJXTtJoZ/QkeRDzqjF0NFK5XcUw4jL3NI4E1RPcyEYY9N6ZFWqMwH1N5RZpfm3EiBDDV8ykGxCXpBtDcw9s0wlaWaBrJmXGNvCfqgmRomT09CuslSQzfefN3YIt9gTiaJ6lPBBWWYDu5yQD/DVYpUiPauHGGVjhTYMfTdAG3TcNkHb6ATd4oRrwc2tHik2+t2u66NtNgO3VbyHHb8AP0oGJAVNLE+AGAspISVwCrZD1yNz0L8Azio2zjmzALYCt1mCrS72imA7CM7B1vVg03PD0obNWaudRglGsbJWJeWgIpCDs9s6Wl71XK9c5Krjz51VZ7628cK9aKBYloC0TFBjDn0vtf2casuZALz3zEBK2TEdwSG6kiZg+nkptCl5jpEBGSqNj7SkjF4kcpoYM0li3JlQOzaLuSL431ys1DF+k1mob4edfs5loSvJZuWHmSBWkULLZMBReVZM0KFMc/wCwsZUo2BRXZfOL/4kLkeXz8+pGKGy7Ti5Ek4NZDgmNcCJ4Iz9xYledfYarh+6wafW6vqr+bSXnCfOU2fN8Z22s+68dbadnsOqz6rvqjvV3dr32o/az9qv2dZqZc48di6t2p9/OCQyFA==</latexit>

Factorization frequency Prec. Prec. compute (s) Linear solve (s) Total GMRES iters

Every Newton iteration Tacho 661.5 58.7 2859

Every Newton iteration GLU 199.1 335.4 1681

Once per time step GLU 76.0 335.1 1681

Every 2 time steps GLU 45.3 349.7 1755

Every 4 time steps GLU 30.6 363.4 1825



2727

Conclusions and future work

• AD-generated Jacobians are extremely powerful
– No need to compute terms by hand
– Require careful attention to achieve performance on GPUs

• Continued evaluation of GPU sparse direct solvers

• Develop options for AMD/Intel GPUs
– SuperLU, Tacho
– Reevaluate ILU-based approaches (FastILU?)

• Physics-based preconditioning?
– Use of low-order approaches leads to less work per domain – may be 

inefficient on GPUs



2828

Wishlist

• Optimizations for matrix scatter operations in Tpetra
• Support for customizable preconditioner reuse
• More GPU-capable preconditioners

– When AMG doesn't work, there aren't many alternatives...
– AMD path is unclear (SuperLU?)
– Is Tacho the answer?
– Refactor-based sparse direct solvers?

• Removing nvcc_wrapper


