OAK RIDGE

National Laboratory

CFD Simulations with Panzer

Trilinos User-Developer Group Meeting 2023

Steven Hamilton (ORNL)
Stuart Slattery (ORNL)
Taylor Erwin (ORNL)
Roger Pawlowski (SNL)
Bryan Reuter (SNL)

<3\ U.S. DEPARTMENT OF

¥)ENERGY

ORNL is managed by UT-Battelle LLC for the US Department of Energy

<

QOutline

 Overview and code summary

* Optimizing GPU Jacobian construction
* Linear solvers and preconditioning

o Conclusions and wishlist

%OAK RIDGE

National Laboratory

Overview

2D/3D time-dependent, unstructured mesh compressible Navier-Stokes
— Cartesian and RZ coordinate systems

Continuous finite element
- SUPG and entropy viscosity stabilization

Multithreaded CPU and GPU (Nvidia and AMD) are all important

Heavily built on Trilinos framework
- Panzer/Phalanx packages for finite element construction
— Tempus for time integration
- NOX for nonlinear solvers

- Epetra/Tpetra for parallel linear algebra

— Stratimikos for linear solver construction (many packages underneath)
- Sacado for automatic differentiation

— Kokkos for performance portability

OAK RIDGE

National Laboratory

Flow around cylinder in tunnel

%OAK RIDGE

National Laboratory

Jacobian matrix construction

o Automatic differentiation allows analytic Jacobians to be
computed for use with Newton's method

— No hand derivation
— No finite difference approximations
— Only requires function (residual) evaluation

« Sacado package provides AD types

- C++ templates allow single function implementation for either standard
floating point or AD types

— Kokkos support allows AD operations to be performed on GPUs

S_QOAK RIDGE

National Laboratory

AD Jacobian on GPUs

e Initial CUDA port showed huge bottleneck in Jacobian
construction

» Profiling turned up several hot spots
— Teuchos stacked ftimer is awesomel!

CPU profile GPU profile

Jacobian scatter Jacobian volume terms

Prec. construction

Jacobian volume terms

Other
Other

Linear solve

Linear solve Jacobian scatter Prec. construction

OAK RIDGE

National Laboratory

Primary culprit: memory management

« Objects in the Panzer evaluator graph are templated to
evaluation type
- scalar type is double when evaluating the residual

- scalar type is AD type when computing the Jacobian

« Developers are in the habitf of tfreating scalar type like POD
- Standard math operations are overloaded
— Generally works fine on the CPU

e PaOnzer uses Sacado: :DFad<double>
— Derivative dimension is not known at compile time
— Thread-local scalars may trigger on-device memory allocations

S_QOAK RIDGE

National Laboratory

Basic evaluator

o Consider simple evaluator with dependent (input) and
evaluated (output) fields

template<class EvalType, class Traits>
void MyEvaluator<EvalType, Traits>::operator()(
const Kokkos::TeamPolicy<PHX::exec_space>: :member_type& team) const
{
int cell = team.league_rank();
int num_points = _inputl.extent(1);
Kokkos: :parallel_for(
Kokkos: : TeamThreadRange (team, O, num_points), [&](const int point)
{
// Eztract input data
scalar_type inl = _inputl(cell, point);
scalar_type in2 = _input2(cell, point);
// Perform local manipulations
scalar_type tmp = inl * inl + in2 * in2;
// Compute properties from data
_outputl(cell, point) = _properties.compute_outl(inl);
_output2(cell, point) = _properties.compute_out2(inl, in2);
_output3(cell, point) = _properties.compute_out3(tmp);
}
}

OAK RIDGE Perfectly reasonable if scalar typeis double

National Laboratory

Basic evaluator

o Consider simple evaluator with dependent (input) and
evaluated (output) fields

template<class EvalType, class Traits>
void MyEvaluator<EvalType, Traits>::operator () (
const Kokkos::TeamPolicy<PHX::exec_space>: :member_type& team) const
{
int cell = team.league_rank();
int num_points = _inputl.extent(1);
Kokkos: :parallel_for(
Kokkos: : TeamThreadRange (team, 0, num_points), [&](const int point)
{
// Eztract input data
scalar_type inl = _inputl(cell, point);
scalar_type in2 = _input2(cell, point);
// Perform local manipulations
scalar_type tmp = inl * inl + in2 * in2;
// Compute properties from data
_outputl(cell, point) = _properties.compute_outl(inl);
_output2(cell, point) = _properties.compute_out2(inl, in2);
_output3(cell, point) = _properties.compute_out3(tmp) ;
}
}

OAK RIDGE For Sacado: : DFad, these are dynamic memory allocations!!!

National Laboratory

Basic evaluator

o Consider simple evaluator with dependent (input) and
evaluated (output) fields

template<class EvalType, class Traits>
void MyEvaluator<EvalType, Traits>::operator() (
const Kokkos::TeamPolicy<PHX::exec_space>: :member_type& team) const
{
int cell = team.league_rank();
int num_points = _inputl.extent(1);
Kokkos: :parallel_for(
Kokkos: :TeamThreadRange (team, O, num_points), [&](const int point)
{
// Eztract input data
auto inl = _inputl(cell, point);
auto in2 = _input2(cell, point);
// Perform local manipulations
auto tmp = inl * inl + in2 * in2;
// Compute properties from data
_outputl(cell, point) = _properties.compute_outl(ini);
_output2(cell, point) = _properties.compute_out2(inl, in2);
_output3(cell, point) = _properties.compute_out3(tmp);
}
}

OAK RIDGE Using auto will “do the right thing”

National Laboratory

Handling thread-local operations

« What if we want to perform extra operations on thread-locals?
— Using auto doesn’'t work anymore

template<class EvalType, class Traits>
void MyEvaluator<EvalType, Traits>::operator() (
const Kokkos::TeamPolicy<PHX::exec_space>: :member_type& team) const
{
int cell = team.league_rank();
int num_points = _inputl.extent(1l);
Kokkos: :parallel_for(
Kokkos: : TeamThreadRange (team, 0, num_points), [&](const int point)
{
// Eztract input data
auto inl = _inputl(cell, point);
auto in2 = _input2(cell, point);
scalar_type tmp = inl * inl;
if (some_condition)
tmp += in2 * in2;
// Compute properties from data
_outputi(cell, point) = _properties.compute_out (tmp);
}
}

OAK RIDGE

National Laboratory

Handling thread-local operations

e Create Kokkos: :View for storing temporary values
— Must be preallocated before kernel launch for all threads

template<class EvalType, class Traits>
void MyEvaluator<EvalType, Traits>::operator()(
const Kokkos::TeamPolicy<PHX::exec_space>: :member_type& team) const
{
int cell = team.league_rank();
int num_points = _inputl.extent(1);
Kokkos: :parallel_for(
Kokkos: : TeamThreadRange (team, O, num_points), [&](const int point)
{
// Eztract input data
auto inl = _inputl(cell, point);
auto in2 = _input2(cell, point);
auto&& tmp = _temporary(cell, point);
tmp = inl * ini;
if (some_condition)
tmp += in2 * in2;
// Compute properties from data
_outputl(cell, point) = _properties.compute_out (tmp) ;
}
}

OAK RIDGE

National Laboratory

Returning values from a method

« What should return type be?¢

struct Properties
{
template<typename T1, typename T2>
KOKKOS_INLINE_FUNCTION
xxx compute_out(const T1& inl, const T2& in2) const
{
return a * inl + b * in2;
by
s

OAK RIDGE

National Laboratory

Returning values from a method

« What should return type be?¢

struct Properties

{

template<typename T1, typename T2>
KOKKOS_INLINE_FUNCTION

xxx compute_out(const T1& inl, const T2& in2) const

{
return a * inl + b * in2;

3

» Possiblilities:
- scalar type:same issues as thread local variables

— Sacado: :Promote<T1l, T2>:essentially the same thing
— auto: Segfault on CPU (performant with CUDA!)

OAK RIDGE

National Laboratory

Returning values from a method

» Our solution: move return value to function argument

struct Properties
{
template<typename T1, typename T2, typename T3>
KOKKOS_INLINE_FUNCTION
void compute_out(const T1& inl, const T2& in2, T3&& out) const
{
out = a * inl + b * in2;
}
}s;

* The universal reference (&&) is important!
— Allows correct behavior for both POD and AD types

OAK RIDGE

National Laboratory

Returning values, again

« What if you really want to return values from a functione
— Converting return value to function argument may reduce readability
— Can't “chain” operations together

« Solution: Create your own Sacado expression

— Explicitly implement derivative terms rather than relying on Sacado to
propagate

S_QOAK RIDGE

National Laboratory

Use case: smooth math operations

« Non-smooth math operations can be replaced with
differentiable approximations

template<typename T>
KOKKOS_INLINE_FUNCTION
scalar_type smooth_abs(const T& x, double tol)
{
if (x >= tol)
return x;
else if (x <= -tol)
return -X;
else
return 0.5 * (x * x / tol + tol);
}

* As before, return forces memory allocation if T is an AD type
— ldeally, we should be able to use this as:

out = a * smooth_abs(x, tol) + b;

OAK RIDGE

National Laboratory

User-defined Sacado expression

template<typename T>
class SmoothAbsOp
{
public:
SmoothAbsOp (const T& x, double tol)
cox_(x)
, tol_(tol)
{3

value_type val() const
{
if (x_ >= tol.)
return x_.val(Q);
else if (x_ <= -tol)
return -x_.val();
else
return 0.5 * (x_.val() * x_.val() / tol_ + tol_);
}

value_type dx(int i) const
{
if (x_ >= tol.)
return x_.dx(i);
else if (x_ <= -tol)
return -x_.dx(i)
else
return x_.val() * x_.dx(i) / tol_;

}

private:
const T& x_;
double tol_;
};

template<typename T>
SmoothAbsOp<Sacado: : Expr<T>> smooth_abs(const Sacado: :Expr<T>& x, double tol)
{
return SmoothAbsOp<Sacado: :Expr<T>>(x, tol);
}

e This is not a complete example!
— Additional templating and traits
specializations required

 Multi-parameter cases are much
more complicated

- Mixing AD and POD types

Hierarchical parallelism

e With Kokkos, Sacado can use derivative dimension for
parallelism

— Maps to vector unit (CUDA warp)
— Automatically embedded in AD operations

e Panzer hierarchical parallelism (Kokkos: : TeamPolicy) reserves
vector unit for Sacado derivative dimension

— Sacado parallelism not enabled by default!
- Need configure optfion “~D Sacado ENABLE HIERARCHICAL DFAD=ON"

e Only single thread per warp was active in hierarchical kernels
— Not caught initially due to other performance issues

S_QOAK RIDGE

National Laboratory

Performance results

o Opftimizations in Jacobian construction have made significant difference
on GPU

— Gas properties kernel is 400x faster on GPU, 1.15x faster on CPU
— Scatter operation in Tpetra::CrsMatrix has become bottleneck

Original fiming breakdown Updated timing breakdown

175 B 16 core CPU B 16 core CPU
mm 2x V100 GPU mm 2x V100 GPU

OAK RIDGE

National Laboratory

Solver hierarchy

« Newton's method used as nonlinear solve
— One or more nonlinear solves per time step
— Typically 3-5 nonlinear iterations per nonlinear solve
— One linear solve per nonlinear iteration

— Anderson acceleration is also viable option through Trilinos NOX
interface, but not yet evaluated

« GMRES used almost exclusively as linear solver
— Unpreconditioned GMRES fails even for trivial problems
— Restarting is very ineffective — large subspace size potentially needed

S_QOAK RIDGE

National Laboratory

Preconditioner selection

« Availability of Jacobian matrix has led to focus on algebraic
preconditioners

— Physics-based preconditioning is an area for future consideration

» Algebraic multigrid approaches fail for all but simplest cases
— ML, Muelu, BoomerAMG, and AMGCL have all been evaluated

o Additive Schwarz style preconditioners have shown significant
promise
- Small inter-block overlap improves robustness and parallel scalability

— Both incomplete factorizations and sparse direct solvers have potential
for local block solves

S_QOAK RIDGE

National Laboratory

Solver performance

« MPl only (1 thread per rank), 2x 64-core AMD CPUs
» Global matrix size: 120k spatial elements, 600k DOFs

x 104

N
U

A m—LU(2)
m— |LU(4)
— |LUT(1e-4)
| — KLU

= Pardiso

Total linear iterations
~ ~ N
o w o

o
&)

o
o

102
Number of processors

OAK RIDGE

National Laboratory

103

Preconditioner setup time (s)

103 4

102 4

101 _

ILU(2)
ILU(4)

m— |LUT(1le-4)

KLU ~
Pardiso S
== = |inear scaling \\,
102 103

Number of processors

GPU local block solvers

o CuUSOLVER
- Nvidia GPUs only
- GPU-based QR factorization
- RF solver requires one-time host factorization with on-GPU refactorization
- Undocumented GLU solver provides optimized alternative to RF
e Also requires initial host factorization
o SuperlLU-Dist
- GPU kernel under active development
- Provides distributed-memory parallel sparse direct solves

e Trilinos Tacho
- Recentintroduction
- Implemented using Kokkos

e Pardiso
— Non-free distribution

» Ginkgo

— Only ILU factorizationse

Not yet evaluated
OAK RIDGE

National Laboratory

Sparse direct solver GPU (V100) performance

Factorization fime

Solve fime
—— CUSOLVER RF
100 — CUuSOLVER GLU
10! —— Trilinos Tacho
—— SuperLU-Dist
0 0
- 10° o 107!
£ IS
[[
10-1 —— CUSOLVER RF
—— CUSOLVER GLU 102
—— Trilinos Tacho
1072 —— SuperlLU-Dist
104 10° 108 104 10° 108
Matrix rows Matrix rows

« cUSOLVER GLU provides best factorization performance
— One-time CPU setup expected to be amortized across multiple solves

 Trilinos Tacho solver has best triangular solve performance

OAK RIDGE

National Laboratory

Preconditioner reuse

Jacobian matrix frequently changes slowly for many problems
- Repeating factorization for preconditioner every Newton iteration, every time step is overkill

Selecting factorization frequency not available with Trilinos preconditioners

Reducing to one factorization per time step has no impact on solver convergence!

Actual behavior expected to be highly problem dependent
- Automatically determine when to refactore

Factorization frequency Prec. Prec. compute (s) Linear solve (s) Total GMRES iters

Every Newton iteration Tacho 661.5 58.7 2859
Every Newton iteration GLU 199.1 335.4 1681
Once per time step GLU 76.0 335.1 1681
Every 2 time steps GLU 45.3 349.7 1755
Every 4 time steps GLU 30.6 363.4 1825

OAK RIDGE

National Laboratory

Conclusions and future work

 AD-generated Jacobians are extremely powerful
— No need to compute terms by hand
— Require careful attention to achieve performance on GPUs

e Continued evaluation of GPU sparse direct solvers

e Develop options for AMD/Intel GPUs
— SuperlLU, Tacho
— Reevaluate ILU-based approaches (FastlLU?)

» Physics-based preconditioning?
— Use of low-order approaches leads to less work per domain — may be
inefficient on GPUs

S_QOAK RIDGE

National Laboratory

Wishlist

« Optimizations for matrix scatter operations in Tpetra
e Support for customizable preconditioner reuse

« More GPU-capable preconditioners
- When AMG doesn't work, there aren't many alternatives...
— AMD pathis unclear (SuperLU?)
— Is Tacho the answer?
— Refactor-based sparse direct solverse

« Removing nvcc wrapper

S_QOAK RIDGE

National Laboratory

