
Spack Driven Software Development and Spack-Manager

Philip Sakievich (SNL)
psakiev@sandia.gov

10/27/2022

Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology & Engineering Solutions of Sandia, LLC,

a wholly owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under

contract DE-NA0003525.

SAND2022-14726 C

mailto:psakiev@sandia.gov

2 Exascale Computing Project

Overview

• Spack Overview
• Introduction to Spack Develop
• Overview of Spack Develop API
• Making it simpler with Spack-Manager

Acknowledgements: Jon Rood, Timothy Smith,
Luke Peyralans, Spack Dev Team, Spack
community

ECP: Funding Statement
This research was supported by the Exascale

Computing Project (17-SC-20-SC), a
collaborative effort of two U.S. Department of
Energy organizations (Office of Science and

the National Nuclear Security
Administration) responsible for the planning

and preparation of a capable exascale
ecosystem, including software, applications,

hardware, advanced system engineering, and
early testbed platforms, in support of

the nation’s exascale computing imperative.

3 Exascale Computing Project

Spack: Package Manager++

• Package manager focused on HPC
applications

• Spack has many attractive features:
– Complex package and environment

configurations
– Embedded tribal HPC knowledge
– A unique, scalable, multicomponent

development tool (spack develop)
• Spec:

– trilinos@develop+fortran build_type=Release %gcc@10.3.0

• Environment:
– Constrain what software is available and gets built (pyenv,

conda, etc)

This is a Spack Environment file.
#
It describes a set of packages to be
installed, along with
configuration settings.
spack:

specs:
- nalu-wind
- trilinos@develop
view: false
develop:

nalu-wind:
spec: nalu-wind@master

trilinos:
spec: trilinos@develop

Root
specs

Develop
specs

4 Exascale Computing Project

ExaWind: A Motivating Application
• ExaWind software stack:

– Combine two loosely
coupled CFD codes with
entirely different
software stacks (Trilinos
and AMReX)

– Living on the develop
branch of multiple
dependencies

– Project is actively
supporting development
of 7+ software packages
in the stack (CPU+GPU)

• Challenges:
– Building
– Developing
– Testing
– Deploying

zlib@1.2.12/fmhpso7

ncurses@6.2/xdbaqeo

pkgconf@1.8.0/kfureok

perl@5.34.1/ayneiqf

gdbm@1.19/vjg67nd berkeley-db@18.1.40/xgt3tlsbzip2@1.0.8/65edjf6

diffutils@3.8/662adoo

libiconv@1.16/fu7tfsr

readline@8.1/tjceldr

m4@1.4.19/mieowvu

libsigsegv@2.13/ojo3c5s

hypre@2.24.0/erwbw3r

openblas@0.3.20/2y73rxi

openmpi@4.1.3/y5sg6bt

libedit@3.1-20210216/7v7bqx2

openfast@2.6.0/rnpwc52

yaml-cpp@0.7.0/lvusnra hdf5@1.12.1/gaahlus

libxml2@2.9.12/7yabyvi

cmake@3.23.0/fr27lyr

nalu-wind@master/7gwnkf6

nccmp@1.9.0.1/bek6tka

netcdf-c@4.8.1/tt3etx3

tioga@develop/eaax6eutrilinos@develop/oeo5hy4

matio@1.5.17/qugvqba

hwloc@2.7.1/mvtc7s4 openssl@1.1.1n/bte724q

xz@5.2.5/dwiv2ys

parallel-netcdf@1.12.2/alekjpw

boost@1.78.0/7iyqxuw

amr-wind@main/5o2ip3x

exawind@master/orab7jj

parmetis@4.0.3/5cgateh

metis@5.1.0/stxkqm4

libevent@2.1.12/t5lh5jd openssh@8.9p1/gowd4sr

cgns@4.3.0/3ibrjjk

Packages under active
development

5 Exascale Computing Project

Spack Develop
• In a spack environment develop specs

can be added
• Develop specs are

– If DAG_spec.satisfies(develop_spec)
• Do a build from the users source code rather than

from spack’s staging procedure
• Perform incremental builds based on timestamp

of files in the source directory

• Allows for arbitrary development of
packages in the DAG
– Dependencies will get automatically rebuilt

• Allows for multiple builds from the same
source
– Cuda and Non-Cuda builds from the same

source code at the same time
– DAG level parallelism is available in builds

In this configuration you will get
4 develop builds: cuda and non-cuda
nalu-wind and trilinos coming from
the same sources
spack:

specs:
- nalu-wind +cuda cuda_arch=70
- nalu-wind ~cuda
view: false
develop:

nalu-wind:
spec: nalu-wind@master

trilinos:
spec: trilinos@develop

6 Exascale Computing Project

Development Environment API

• Utilize develop feature
– Create environment
– Tag the specs/packages

you wish to develop
– Make sure the source code

is correct (several ways to
do this)

– Install
• To develop

– Make code changes
– Spack install (incremental

build)

Setup
Envrionment

• spack env create foo
• spack env activate foo
• spack add do re mi

Development
Commands

• spack develop do@develop
• spack develop re@main
• spack develop mi@main

Final Touches

• spack cd --environment
• cd re
• git remote add user git@github.com:user/feature
• git fetch --all && git checkout feature
• spack install

mailto:git@github.com:user/feature

7 Exascale Computing Project

Spack-Manager: API Reduction
• Spack-Manager:

– Embed machine specific natively
– Reduce the API for using spack develop

• Utilize Spack API’s to write Spack extensions
– Environment curation
– All of our scripts serve to reduce the end user API
– Can be replicated through core Spack commands and

a little manual intervention

• A core example of this is:
– find-machine + create-env

• find-machine: a utility that allows custom python scripts to
identify the current machine

• create-env: uses find-machine and stored configs to automate
platform specific environments

spack env create -d [foo]

spack env activate -d [foo]

spack repo add ${SPACK_MANAGER}/repos/exawind

manually insert machine specific configs:
packages.yaml, configs.yaml, compilers.yaml

spack add [specs]

spack env deactivatespack manager create-env –d [foo] –s [specs]

8 Exascale Computing Project

What does it look like?
spack manager create-env --spec exawind amr-wind nalu-wind

9 Exascale Computing Project

Onboarding Developers

• Conflict: 1 command build vs a
learning curve
– Made significant efforts to reduce the API

• Ask developers to learn 3 things about
Spack:
– How to query the API for help i.e. --help

and spack info
– How to read and write a Spack spec
– What the major steps in the Spack build

process are

• Learn to speak the basics of the
language

I [..] was able to install Exawind using
Spack fairly easily as a new hire. I have
definitely had a good experience so far

- Ilker Topcuoglu (NREL)

I have to type a whole 12
characters to compile just 2
different codes with a zillion

dependencies to debug my code
- Ganesh Vijayakumar (NREL)

Spack Manager and Spack have saved me an
incredible amount of time and headache,

providing an intuitive framework that
ensures dependency resolution and

repeatable, shareable, self-documenting
builds.

- Nate deVelder (SNL)

10 Exascale Computing Project

Pros and Cons of Spack Driven Development

Pros

• Spack is already solving the dependency issues
• Spack is scalable

– DAG parallelism
• HPC Case study: 3 compiler configurations for ExaWind

– 1.5 hours with DAG parallelism
– 4.5+ hours without

• Spack is configurable
– +cuda and ~cuda in same environment (DAG

parallel)

• Spack is extendable
• Spack is testable
• Simplified and unified API dramatically reduces

Dev-Ops workload

Cons

• Spack can be overwhelming
– 3-5 ways to do just about everything

• Spack build process has some quirks
– Hash based issues and confusion
– Bootstrapping and occasional ssl issues

• Spack data management and logs make
developers uncomfortable

– spack-build-[hash]
– spack cd -b [package]

• Spack still has some optimization to do
– spack install is a too big of a hammer for

incremental builds

11 Exascale Computing Project

Conclusions

• Spack is taking on a lot of challenges in the HPC software space
– Not everything is perfect, but the progress is rapid
– We can help make it better!

• Very happy with Spack as the driver for development on ExaWind
– Unified API dramatically reduces infrastructure needs
– Gives developers the tools to customize their own environments

• Cons can be mitigated with education and light scripts
• Spack-Manager is a tool for managing and reducing the Spack API with

a particular emphasis on development
– We’d love to have more Trilinos developers test it out

Supplementary Slides

13 Exascale Computing Project

The Vision: Unified Tooling and Environments
• Common environment for

administrators and developers
leads to reuse and consistency
– I’m building exactly what is on my

dashboard
• Common deployment tools

means common interface for
analysts

• A machine agnostic interface
makes this highly deployable

Daily Build Environment

Nightly Tests/CDash Docker
Image/Snapshot

Module Creation Github CI/CD

Admin Workflow

Development
Environment

Module Creation

Developer Workflow

- module use [/path/to]/spack-manager/modules
- module load xyz

End User Environment

14 Exascale Computing Project

Spack-Manager

Spack-Manager Layout

• Spack-Manager
– Project agnostics

code/scripts
• Tooling and testing

– Pre-configured
locations

– Project specific
information
• Customize packages
• Create machine specific

implementations
• Add machine specific

templates

Spack-Scripting

scripting

unit tests

manager

environments

modules

views

Project Specific
Information

repo

configs

scripts

templates

Spack
(submodule)

scripts

15 Exascale Computing Project

Bash ”quick-commands”

• Wrap the functionality of basic
setup and development
commands together

• Common features:
– Shell source Spack/Spack-

Manager
– Create an anonymous Spack

environment
– Activate the created environment

• Development specific
assumptions:
– All concrete spec’s are intended as

develop specs ([name]@[version])
– Anything not pre-cloned should be

fetched via spack develop

• quick-create-dev --spec do@develop re@main mi@main

16 Exascale Computing Project

Externals: Re-Using Binaries

• Spack has several different ways to
reuse binaries
– Upstreams
– Binary Caches
– --reuse
– Externals

• First 3 rely directly on the concertizer
to make the “best” decision

• Development workflow often wants
specific binaries

• Created a way to auto generate
externals in an externals.yaml file

• “Snapshots” are time-dated versions of
the software installed on each system

Environment

View

Snapshot

ExaWind

Nalu-Wind

Trilinos

TPL

AMR-Wind

TPL

17 Exascale Computing Project

Containers

• Partnered with E4S to create nightly
containers

• Software provenance preserved through
history of containers on Docker Hub

• Infrastructure makes containerization
trivial
– E4S added 4 lines to their base Ubuntu

docker configuration

• With externals + container we can drive
our CI for every package through 1 image

• Developers can download image and
have same environment on laptops

