Spack Driven Software Development and Spack-Manager

Philip Sakievich (SN L) Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology & Engineering Solutions of Sandia, LLC,
psakiev@sandia.qgov a wholly owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under
contract DE-NA0O003525.
10/27/2022

c(CP

EXASCALE COMPUTING PROJECT

% ;T)""f-x;% U.S. DEPARTMENT OF Offlce Of

' ENERGY Science SAND2022-14726 C

NIYSE

nal Nuclear Security Administrati

mailto:psakiev@sandia.gov

Overview

° SpaCk Overview ECP: Funding Statement
: This research was supported by the Exascale
* Introduction to Spack Develop Computing Project (17-SC-20-SC), a
collaborative effort of two U.S. Department of
e Overview of Spack Develop API Energy organizations (Office of Science and

the National Nuclear Security

. : PR - _ Administration) responsible for the planning
Maki ng It si mpler with SpaCk Manager and preparation of a capable exascale

ecosystem, including software, applications,
hardware, advanced system engineering, and
early testbed platforms, in support of

This presentation will just be a simple overview to the nation’s exascale computing imperative.
highlight capabilities.

Acknowledgements: Jon Rood, Timothy Smith,
Luke Peyralans, Spack Dev Team, Spack
community

"~ \
\ EXASCAHALE

) —) COMPUTING
PROJECT

2 Exascale Computing Project \(

Spack: Package Manager++

« Package manager focused on HPC
applications

« Spack has many attractive features:

— Complex package and environment
configurations

— Embedded tribal HPC knowledge

— A unique, scalable, multicomponent
development tool (spack develop)
* Spec:
— trilinos@develop+fortran build_type=Release %gcc@10.3.0

 Environment:

— Constrain what software is available and gets built (pyenv,
conda, etc)

3 Exascale Computing Project

This is a Spack Environment file.

#

It describes a set of packages to be
installed, along with

configuration settings.

spack:

SPecs: Root
— nalu-wind } specs
— trilinos@develop
view: false
develop:

nalu—-wind:

spec: nalu-wind@master Develop
trilinos: Specs

spec: trilinos@develop

=

\\ EXASCAHALE

) —) COMPUTING
PROJECT

{

ExaWind: A Motivating Application

, Packages under active

— CO m b | ne tWO I oose Iy . exawindemaster/orab77
COu p I ed C F D COd es Wlth nalu-windemaster,/7gnnkf6

entirely different /
SOftwa re Sta CkS (Trl I I n OS / trilinos@develop/oeoShy4 ccmp@1.9.0.1/bek6tk amr-wind@main/5021ip: ioga@develop/eaax6eu

and AMReX)
. . openfast@2.6.0/rnpwc5 hypre@2.24.0/erwbw3r parmetis@4.0.3/5cgateh cgns@4.3‘0/3ibr‘jjk]'[matio@l.S.l7/ququba netcdf-c@4.8.1/tt3etx3
— Living on the develop X /

. N/
b ra n Ch Of m u Itl p I e [yaml-cpp@@.?.e/lvusnra \[openblas@@.3.20/2y73rxi] [metis@S.l.O/stxqu] parallel-netcdf@l.12.2/alekjpw hdf5@1.12.1/gaahlus
dependencies —— _

. . . cmake@3.23.0/fr271yr m4@1.4.19/mieowvu openmpi@4.1.3/y5sg6bt
— Project is activel 7 7

S u gpo rtl n g d eve I>cl) p m e nt [libsigsegv@Z.lS/ojoBch] [1ibevent@2.1.12/t51h5jd] [openssh@8.9p1/gowd4sr]
of 7+ software packages
In the StaCk (C U+G U) hwloc@2.7.1/mvtc7s4

° C h I I . 1ibxml2@2.9.12/7yabyvi boost@1.78.0/71iyqxuw
allenges:
T
_ B Ui I d in g x2@5.2.5/dwiv2ys [bzip2@1.0.8/65edjf6] [gdbm@l.lQ/ngG?nd] [berkeley—db@ls.1.40/xgt3tls]_(zlib@1.2.12/fmhpso7

—_ D eve I O p | n g diffutilse3.8/662adoo readline@8.1/tjceldr [libedit@S.1—20210216/7v7qu2J
.
- Te Stl n g libiconv@l.16/fu7tfsr ncurses@6.2/xdbageo
.
— Deploying

openssl@l.1.1n/bte724q

perl@5.34.1/ayneiqgf

pkgconf@1.8.0/kfureok

—
fg=

\
EXASCAHALE
\) I—) COMPUTING

PROJECT

4 Exascale Computing Project \(

Spack Develop

In this configuration you will get
4 develop builds: cuda and non-cuda
nalu-wind and trilinos coming from

* In a spack environment develop specs
can be added

* Develop SPECSs are # the same sources
— If DAG_spec.satisfies(develop_spec) spack:
« Do a build from the users source code rather than SPEecCs:
from spack’s staging procedure — nalu-wind +cuda cuda_arch=70
« Perform incremental builds based on timestamp — nalu-wind ~cuda
of files in the source directory view: false
 Allows for arbitrary development of develop:
packages in the DAG nalu-wind:
— Dependencies will get automatically rebuilt . S_'I%?Cl nalu-wind@master
rilinos:
. Q(I)Ilcj)%z for multiple builds from the same spec: trilinos@develop

— Cuda and Non-Cuda builds from the same
source code at the same time

— DAG level parallelism is available in builds

=\
\ EXASCAHALE

) —) COMPUTING
PROJECT

5 Exascale Computing Project \(

Development Environment API

 Utilize develop feature o
— Create environment Envrionment

* spack env create foo
* spack env activate foo
 spack add do re mi

— Tag the specs/packages

you wish to develop

— Make sure the source code
Is correct (several ways to

do thiS) Commands

Development

* spack develop do@develop
* spack develop re@main
* spack develop mi@main

— |Install

* To develop
— Make code changes
— Spack install (incremental [FREREIEIEE

* spack cd --environment

cdre

* git remote add user git@aithub.com:user/feature
« git fetch --all && git checkout feature

* spack install

build)

6 Exascale Computing Project

-\
\) EXASCALE
) COMPUTING
\ PROJECT
g

mailto:git@github.com:user/feature

Spack-Manager: APl Reduction

« Spack-Manager: spack env create -d [foo]
— Embed machine specific natively
— Reduce the API for using spack develop g

» Utilize Spack API’s to write Spack extensions
— Environment curation @

— All of our scripts serve to reduce the end user API :
— Can be replicated through core Spack commands and SEE D ELE SO AN EIS R e enie

a little manual intervention
4

* Acore example of this is: manually insert machine specific configs:
— find-machine + create-env packages.yaml, configs.yaml, compilers.yaml

+ find-machine: a utility that allows custom python scripts to
identify the current machine

» create-env: uses find-machine and stored configs to automate
platform specific environments ¢ spack add [specs]

L

spack manager create-env —d [foo] —s [specs] <)

o~

7 Exascale Computing Project \\~p

\
EXASCALE
\) I—) COMPUTING

PROJECT

What does it look like?

spack manager create-env --spec exawind amr-wind nalu-wind

1 spack.yaml 1 include.yaml

1 spack: 1 |pepos:

1 include: [include.yaml] 1 - $spack/../repos/exawind

2 concretization: together 2 packages:

3 view: false 3 hypre:

4 specs: [exawind, amr-wind, nalu-wind] 4 variants: +shared
5 version: [develop]
6 all:
7 target: [x86_64]
8 compiler: [apple-clang, gcc, clang]
9 providers:
10 mpi: [mpich, openmpi]
11 blas: [netlib-lapack]
12 lapack: [netlib-lapack]
13 variants: build_type=Release +mpi
14 boost:
15 version: [1.76.0]
16 variants: cxxstd=14
17 hdf5:
18 version: [1.10.7]
19 variants: +cxx+hl
20 netcdf-c:
21 version: [4.7.4]
22 variants: +parallel-netcdf maxdims=65536 maxvars=524288
23 openfast:
24 version: [master]
25 variants: +cxx

26 parallel-netcdf:
27 version: [1.12.2]

28 tioga:
29 version: [develop]
30 yaml-cpp:

31 version: [0.6.3]

32 trilinos:

33 version: [develop]

34 variants: ~adios2~alloptpkgs~amesos+amesos2~anasazi~aztec+belos+boost~chaco~complex~debug~dtk~epetra~epetraext+exodus+explicit_template_instantiation~float+fortran~fortrilinos+glm+
gtest+hdfS5~hypre~ifpack+ifpack2~intrepid~intrepid2~isorropia+kokkos~mesquite+metis~minitensor~ml+mpi+muelu~mumps~nox~openmp~phalanx~piro~python~rol~rythmos~sacado+shards~shylu+
stk~stratimikos~suite-sparse~superlu~superlu-dist~teko~tempus+teuchos+tpetra+uvm~x11l~xsdkflags+zlib+zoltan+zoltan2

35 gotype=long cxxstd=14 build_type=Release
36 config:

37 mirrors:

38 e4s: https://cache.ed4s.io

39 source_cache: ~/.spack/downloads
40 misc_cache: $spack/../.cache

41 build_stage:

42 - $spack/../stage

43 concretizer: clingo

) COMPUTING

8 Exascale Computing Project PROJECT

On boa rd i ng Deve'°pe s I [..] was able to install Exawind using

Spack fairly easily as a new hire. | have
definitely had a good experience so far

. . - llker Topcuoglu (NREL)
e Conflict: 1 command build vs a

learning curve I have to type a whole 12
— Made significant efforts to reduce the API characters to compile just 2
different codes with a zillion
» Ask developers to learn 3 things about dependencies to debug my code

- Ganesh Vijayakumar (NREL)

Spack:

— HO(\jN to qllj(e.n; the API for help l.€. "help Spack Manager and Spack have saved me an
ana spack Inio incredible amount of time and headache,
— How to read and write a Spack spec P providing an intuitive framework that

: : : ensures dependency resolution and
— What the major steps in the Spack build repeatable, shareable, self-documenting

process are builds.
* Learn to speak the basics of the - Nate deVelder (SNL)
language .

9 Exascale Computing Project

Pros and Cons of Spack Driven Development

Pros Cons

» Spack is already solving the dependency issues « Spack can be overwhelming
— 3-5 ways to do just about everything

Spack is scalable

— DAG parallelism « Spack build process has some quirks
« HPC Case study: 3 compiler configurations for ExaWind — Hash based issues and confusion
— 1.5 hours with DAG parallelism — Bootstrapping and occasional ssl issues

— 4.5+ hours without

« Spack data management and logs make

* Spack is configurable developers uncomfortable
— +cuda and ~cuda in same environment (DAG — spack-build-[hash]
parallel)

— spack cd -b [package]

Spack is extendable - Spack still has some optimization to do

Spack is testable — spack install is a too big of a hammer for

' | buil
Simplified and unified API dramatically reduces incremental builds
Dev-Ops workload

—

"~ \
\ EXASCAHALE

) —) COMPUTING
PROJECT

10 Exascale Computing Project \(

Conclusions

« Spack is taking on a lot of challenges in the HPC software space
— Not everything is perfect, but the progress is rapid
— We can help make it better!

 Very happy with Spack as the driver for development on ExaWind
— Unified APl dramatically reduces infrastructure needs
— Gives developers the tools to customize their own environments

« Cons can be mitigated with education and light scripts

« Spack-Manager is a tool for managing and reducing the Spack API with
a particular emphasis on development

— We'd love to have more Trilinos developers test it out

—

’~ \
\ EXASCAHALE

) —) COMPUTING
PROJECT

11 Exascale Computing Project \(

Supplementary Slides

EEEEEEEEEEEEEEEEEEEEEEEE

The Vision: Unified Tooling and Environments

Admin Workflow

Daily Build Environment

Nightly Tests/CDash Docker
Image/Snapshot

~\

|
/}
II
Module Creation Il Github CI/CD
II
J
1

v \

End User Environment

- module use [/path/to]/spack-manager/modules
- module load xyz

e

« Common environment for
administrators and developers
leads to reuse and consistency

— I'm building exactly what is on m
dashboard9 Y y

« Common deployment tools
means common interface for
analysts

* A machine agnostic interface
makes this highly deployable

Developer Workflow

\

Development
Environment

/

13 Exascale Computing Project

Module Creation

Spack-Manager Layout

» Spack-Manager /

Spack-Manager

)
l

— Project agnostics Spack /" Spack-Scripting)
code/scripts (submodule)
* Tooling and testing scripts -
- : ‘ scripting
— Pre-configured e ™
locations Project Specific
: . Information
— Project specific , oo 1 [manager
information . P \&
« Customize packages configs J
« Create machine specific f . j unit tests
implementations o Sl [
« Add machine specific templates } \\
templates \

-

environments

modules

14 Exascale Computing Project

\\ EXASCALE

) —) COMPUTING
PROJECT

Bash "quick-commands”

» Wrap the functionality of basic
setup and developmeént
commands together

« Common features:

— Shell source Spack/Spack-
Manager

— Create an anonymous Spack
environment

— Activate the created environment

» Development specific
assumptions:

— All concrete spec’s are intended as
develop specs ([name]@[version])

— Anything not pre-cloned should be
fetched via spack develop

Step

spack-start

Create an environment
Activate an environment
Add root specs

Add develop specs

Add externals

Concretize and install

quick-create
X
X
X

X

quick-create-dev

X

X

X

quick-develop
X
X

X

 quick-create-dev --spec do@develop re@main mi@main

15 Exascale Computing Project

Ty \
\)

) EXASCAHALE
COMPUTING
PROJECT

Externals: Re-Using Binaries

« Spack has several different ways to
reuse binaries

— Upstreams

— Binary Caches
— --reuse

— Externals

* First 3 rely directly on the concertizer
to make the “best” decision

» Development workflow often wants
specific binaries

» Created a way to auto generate
externals in an externals.yaml file

» “Snapshots” are time-dated versions of Trilinos TPL
the software installed on each system

S
7N\ Py
TPL (
16 Exascale Computing Project N— \~,

\\) EXASCALE
) COMPUTING
PROJECT

Containers

+ Partnered with E4S to create night
containers 20 docker

« Software provenance preserved through |
history of containers on Docker Hub GitHub Actions

* Infrastructure makes containerization
trivial
— E4S added 4 lines to their base Ubuntu
docker configuration

» With externals + container we can drive
our Cl for every package through 1 image

* Developers can download image and
have same environment on laptops

"~ \
\ EXASCAHALE

) —) COMPUTING
PROJECT

17 Exascale Computing Project \(

