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• There’s an interface to Avatar Tools in Trilinos/MueLu
• URL: https://github.com/sandialabs/avatar

• Lead developer: Philip Kegelmeyer.

• Ensembles of decision trees with a ton of bells & whistles.

• C/C++ code (with MPI support).

• Can be used either as TPL or a external package (ala Drekar).

• Why ensembles of decision trees?
• Fast & efficient.

• Work well with small-to-moderate size datasets.

• Ensembles give a lot of accuracy-boosting power.

• Usually more explainable than neural networks.

Machine Learning Actually In Trilinos (FY19)

https://github.com/sandialabs/avatar


MueLu/Avatar Workflow

App: Generates 
features

MueLu: Call Avatar

Avatar: Performs 
classification

MueLu: Choose 
ideal options based 

on classification 

Online PhaseOffline Phase

App: Run lots of 
problems & features

MueLu: Run lots of 
options per problem

Avatar: Trains model 
on offline data



• Choose a single MueLu parameter based on 4 mesh features

• These are five test problems unrelated to the training data.

Simple Example (1)



• Since expl had an out-of-bounds feature no acceptable 
options were found by the heuristics.

• Defaulted to a “safe” answer (namely 0).

Simple Example (2)



• Iteration counts (low = good)

• Heuristic 2 got optimal results except for out-of-bounds expl.

Simple Example (3)



But what about 
neural networks?



• Building block of a NN is a neuron (or perceptron), often drawn like this:

• Some nonlinear function, s, of a matvec (with weight matrix A) and vector add.

• Feedforward Network / Multi-Layer Perceptron (MLP) is a bunch of these:

Basic Neural Networks I

x1

x2

x4

x3
s(Ax+b)

𝑥1 𝜎1(𝐴1𝑥1 + 𝑏1) 𝜎2(𝐴2𝑥2 + 𝑏2) 𝜎𝑛(𝐴𝑛𝑥𝑛 + 𝑏𝑛)… 𝑦𝑛

Inputs OutputsInput
Layer

Output
Layer

Hidden Layers



• NNs are often drawn with multiple “blocks” in each layer.  

• This means each 𝐴𝑖 can be a different size.

• Lots of nonlinear 𝜎𝑖 functions are available (e.g. sigmoid, ReLu, etc.).

• Done correctly, this can approximate any continuous function (similar to Stone-
Weierstrass for polynomials).

Basic Neural Networks II
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• These models are “trained” by choosing parameters 𝐴𝑖 and 𝑏𝑖 to satisfy some objective, 
called a “loss function.”

• Given training data, output pairs (𝑑𝑖, ොy𝑖), for i=1… m, you might get:

• Where M is the MLP model and . is the norm of your choice.

• Note that this model is dense or “fully connected.” 

Basic Neural Networks III
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• Layers need not be dense / fully connected.

• Convolutional networks (CNNs) connect spatially nearby items (tiled over the inputs):

• Recurrent neural networks (RNN) connect temporally nearby items.

Basic Neural Networks IV
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in each row, but shifted.



• Our real-world problems don’t have fixed meshes!

• For unstructured meshes, this is not going to work unless you are 
very, very witty

• Alternative Solution: Graph Neural Networks (GNNs).

Basic Neural Networks IV
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• The downside here is that we’ve fixed all of the dimensions.
• MLP: The input size is fixed.

• CNN: The number of neighbors (and their relations is fixed).

• RNN: The temporal recurrence length is fixed (though this is less of a problem).

Image from SNL Lab News, March 2014.



• Graphs have vertices and edges. 
• We will consider directed graphs.

• GNNs add…
• Immutable attributes associated w/ each vertex + edge.

• Mutable attributes associated with each vertex + edge.

• Global variables with associated attributes.

Graph Neural Networks I
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Sample GNN with:
• 5 vertices (1 attribute each)
• 7 edges (2 attributes each)
• 2 globals (5 attributes each)



• A GNN block has 3 update functions and 3 aggregation functions

• Updates (trained)
• 𝜙𝑣: Update vertex from its attributes, aggregated edge attributes, and globals.

• 𝜙𝑒: Update edge from its attributes, neighboring vertex attributes, and globals.

• 𝜙𝑢: Update globals from aggregated edge and vertex attributes.

• Fixed size inputs and outputs.

• Aggregation functions (not trained)
• 𝜌𝑒→𝑣: Aggregate edge neighbors to vertex.

• 𝜌𝑒→𝑢: Aggregate all edges to globals.

• 𝜌𝑣→𝑢: Aggregate all nodes to globals.

• Variable size inputs and fixed size outputs.

• Note: Since each edge always has two neighboring nodes, node attributes are not aggregated to edges.
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These can be 
composed in almost 
any order.

Graph Neural Networks III

Image from: Battaglia et al. Relational 
inductive biases, deep learning and graph 
networks. arXiv:1806.01261v3, 2018

Most general



• Let’s consider a very simple example: a sparse matrix vector product.

• Remember: A matrix is a graph (off-diagonal entries are considered edges).

Matrix-as-a-Graph: Matrix-Vector Product Example (Ax = b)

• Vertex i attributes:
• a0: 1 immutable, 𝐴𝑖𝑖.

• a1: 1 mutable, 𝑥𝑖 on input, 𝑏𝑖 on output.

• Edge (i,j) attributes:
• c0: 1 immutable, 𝐴𝑖𝑗.

• c1: 1 mutable, 0 on input, 𝐴𝑖𝑗 𝑥𝑗 on output.

• Global attributes: none • Update Edges: c1 = 𝜙𝑒(𝑒𝑖𝑗 , 𝑣𝑖, 𝑣𝑗) = 𝑐0 𝑒𝑖𝑗 𝑎1 𝑣𝑗

• Agg Edge-to-Node: ഥ𝑒𝑖
′ = 𝜌𝑒→𝑣 𝑒𝑖𝑗 ∀𝑗 = σ𝑗≠𝑖 𝑐1(𝑒𝑖𝑗)

• Nodes: a1 = 𝜙𝑣 ഥ𝑒𝑖
′, 𝑣𝑖 = 𝑎0(𝑣𝑖) 𝑎1(𝑣𝑖) + ഥ𝑒𝑖

′

This is a trivial example and has no parameters, but…

𝑣𝑖 𝑣𝑗𝑒𝑖𝑗
a0=𝐴𝒊𝒊 a1= 𝑥𝑖 ഥ𝑒𝑖

′= ?

c0=𝐴𝒊𝐣 c1=0

a0=𝐴𝒊𝒊
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Iterative Method: Jacobi Iteration: 𝑥𝑘+1 = 𝑥𝑘 + 𝜔𝐷−1(𝑏 −A 𝑥𝑘)

• Vertex i attributes:
• a0, a1: 2 immutable, 𝐴𝑖𝑖 , 𝑏𝑖

• a2: 1 mutable, 𝑥𝑖
𝑘 on input, 𝑥𝑖

𝑘+1 on output.

• Edge (i,j) attributes:
• c0: 1 immutable, 𝐴𝑖𝑗.

• c1: 1 mutable, 0 on input, 𝐴𝑖𝑗 𝑥𝑖
𝑘 on output.

• Global attributes:
• d0: 1 immutable: 𝜔.

• Update Edges: c1 = 𝜙𝑒(𝑒𝑖𝑗 , 𝑣𝑖, 𝑣𝑗) = 𝑐0 𝑒𝑖𝑗 𝑎1 𝑣𝑗

• Agg Edge-to-Node: ഥ𝑒𝑖
′ = 𝜌𝑒→𝑣 𝑒𝑖𝑗 ∀𝑗 = σ𝑗 𝑐1(𝑒𝑖𝑗)

• Nodes: a1 = 𝜙𝑣 ഥ𝑒𝑖
′, 𝑣𝑖 = 𝑎2 𝑣𝑖 +

𝑑0 𝑎1 𝑣𝑖 −ഥ𝑒𝑖
′

𝑎0(𝑣𝑖)

𝑣𝑖 𝑣𝑗𝑒𝑖𝑗
a0=𝐴𝒊𝒊 a1= 𝑏𝑖 𝑎2 = 𝑥𝑖

𝑘

c0=𝐴𝒊𝐣 c1=0

𝑒𝑖𝑖



A Trainable Jacobi Iteration: 𝑥𝑘+1 = 𝑥𝑘 + 𝜔𝐷−1(𝑏 −A 𝑥𝑘)

• Vertex i attributes:
• a0: 1 immutable, 𝐴𝑖𝑖 ,

• a1: 1 mutable, 𝑏𝑖 on input, 𝑑𝑖 on 
output.

• Edge (i,j) attributes:
• c0: 1 immutable, 𝐴𝑖𝑗.

• Global attributes:
• d0: 1 immutable: 𝜔.

• Special Edge aggregation:
• Compute min, mean, sum & max of 

edges.

• Agg Edge-to-Node: ഥ𝑒𝑖
′ = 𝜌𝑒→𝑣 𝑒𝑖𝑗 ∀𝑗 = [𝑚𝑖𝑛,𝑚𝑒𝑎𝑛, 𝑠𝑢𝑚,𝑚𝑎𝑥]

• Nodes: a1 = 𝜙𝑣 ഥ𝑒𝑖
′, 𝑣𝑖 = 3 Level NN

𝑣𝑖 𝑣𝑗𝑒𝑖𝑗
a0=𝐴𝒊𝒊 a1= 𝑏𝑖

c0=𝐴𝒊𝐣

𝑒𝑖𝑖

L1: 6x3 L2: 3x3 L3: 3x1
a0 a1 min mean sum max

di

Goal: Choose local damping in lieu of doing an EV estimate for  𝜔



A Trainable Jacobi Iteration: 𝑥𝑘+1 = 𝑥𝑘 + 𝜔𝐷−1(𝑏 −A 𝑥𝑘)

• Per-matrix loss function: Damping Factor

• D=GNN(A) here is our trained “diagonal.”

• Toy data: 5x5 FEM Laplacians w/ varying y stretch.

• Method: 10 epochs of Adam w/ LR=0.01.

• Test Data:
• DF Fixed 𝜔 = 2/3: 0.82.

• Trained Diagonal DF: 0.79.

• Optimal 𝜔 DF: 0.77.

𝐼 − 𝜔𝐷−1𝐴
2

(Done in Matlab)



• Many matrix algorithms can be recast as GNNs!
• OK.  Not anything ordering dependent like Gauss-Seidel, but still.

• Once we have that, we can turn the crank on AI/ML to…
• Choose parameters.

• Combine multiple objective functions.

• Create new data-driven algorithms inspired by (and informed by) old ones.

• GNN software is available in…
• PyTorch: Geometric, Deep Graph Library.

• TensorFlow: graph_nets and TensorFlow GNN.

• Matlab: Deep Learning Toolbox.

• We hope to see this class of algorithms make their way into Trilinos/MueLu!

Where can we go from here?

Warning: Software support for GNNs is 
still a little patchy!

Sample GNNs Apps
• Node/Graph classification
• Computer vision (object 

relations)
• Natural language 
• Traffic forecasting
• Recommender systems
• Molecular structure


