

Machine Learning & Trilinos

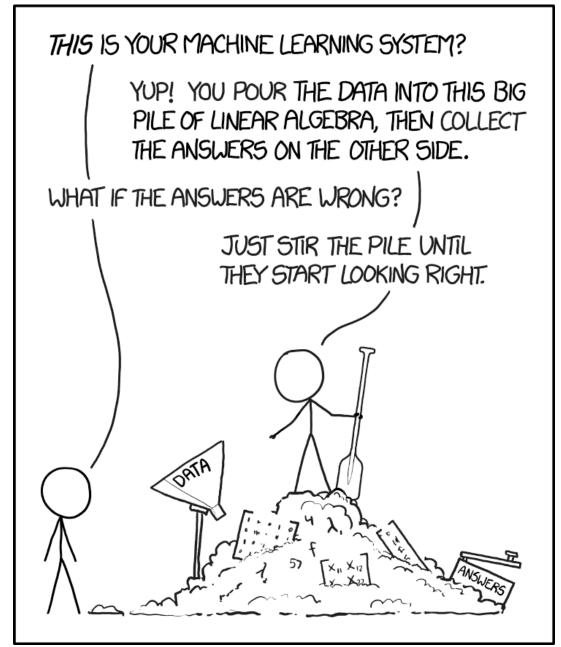
PRESENTED BY

Chris Siefert

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2022-14817 C

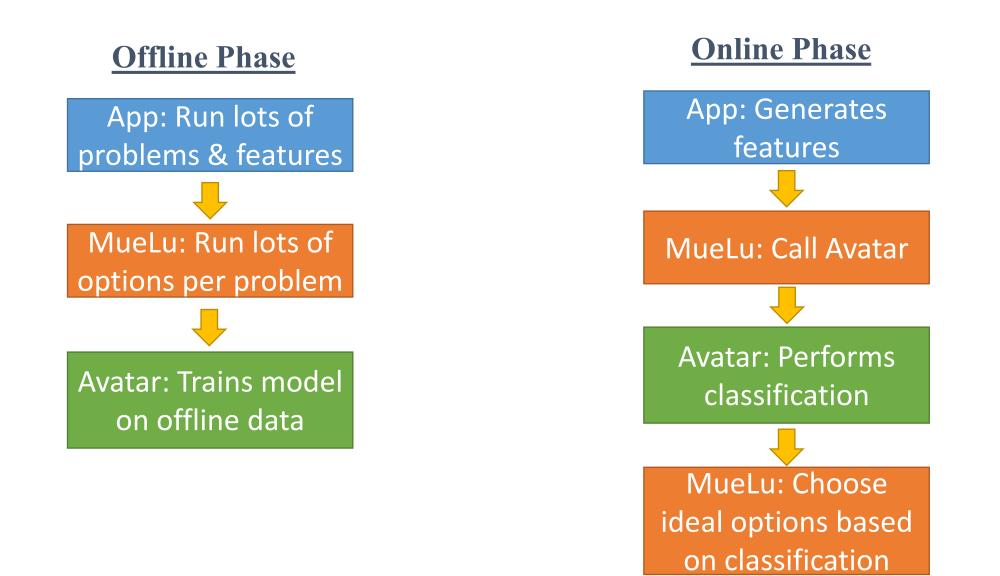
https://xkcd.com/1838/



This comic is licensed under a Creative Commons Attribution-NonCommercial 2.5 License. See https://xkcd.com/license.html Machine Learning Actually In Trilinos (FY19)

• There's an interface to Avatar Tools in Trilinos/MueLu

- URL: https://github.com/sandialabs/avatar
- Lead developer: Philip Kegelmeyer.
- Ensembles of decision trees with a ton of bells & whistles.
- C/C++ code (with MPI support).
- Can be used either as TPL or a external package (ala Drekar).
- Why ensembles of decision trees?
 - Fast & efficient.
 - Work well with small-to-moderate size datasets.
 - Ensembles give a *lot* of accuracy-boosting power.
 - Usually more explainable than neural networks.



• Choose a single MueLu parameter based on 4 mesh features

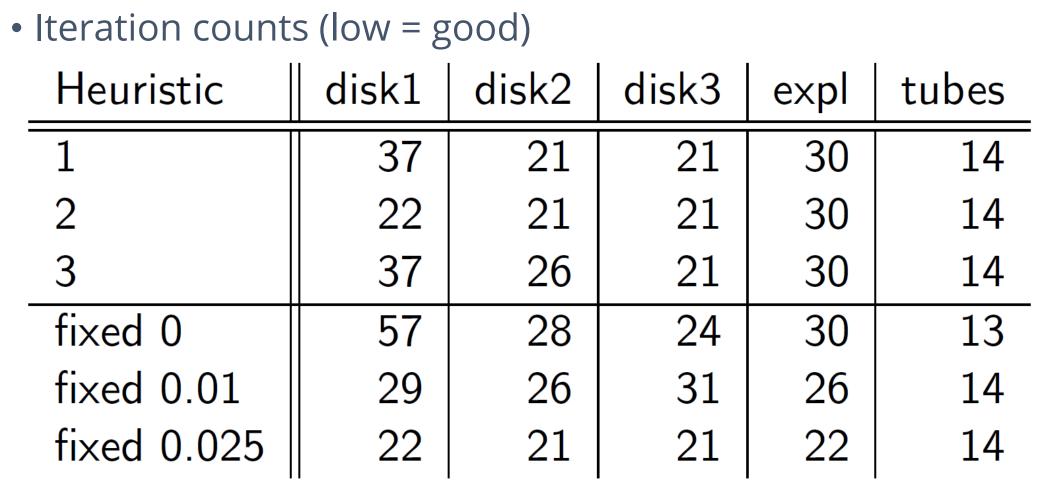
	Training			Test		
Feature	Min/Max	disk1	disk2	disk3	expl	tubes
(1)	1.17 / 100	14.9	5.19	4.08	8.25	5.11
(2)	1.08 / 66	6.88	2.90	2.69	3.23	1.65
(3)	4.6e-4 / 9.2e-1	1.4e-2	1.2e-1	2.9e-1	1.4e-2	2.9e-1
(4)	1.08 / 3.91	2.97	2.37	2.21	6.05	2.14

• These are five test problems unrelated to the training data.

Heuristic				-	
1	0.005	0.025	0.025	0.00	0.025
2	0.025	0.025	0.025	0.00	0.025
3	0.005 0.025 0.005	0.01	0.025	0.00	0.01

- Since expl had an out-of-bounds feature *no* acceptable options were found by the heuristics.
- Defaulted to a "safe" answer (namely 0).

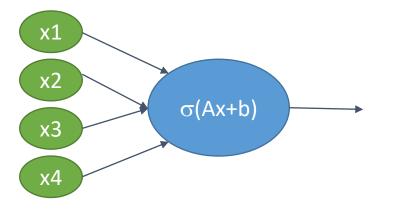
Simple Example (3)



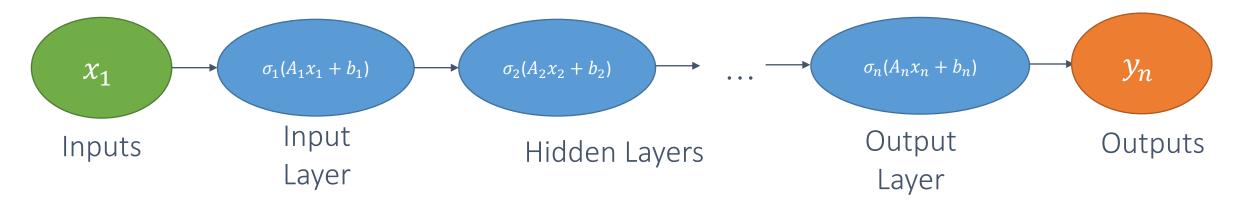
• Heuristic 2 got optimal results *except for out-of-bounds expl.*

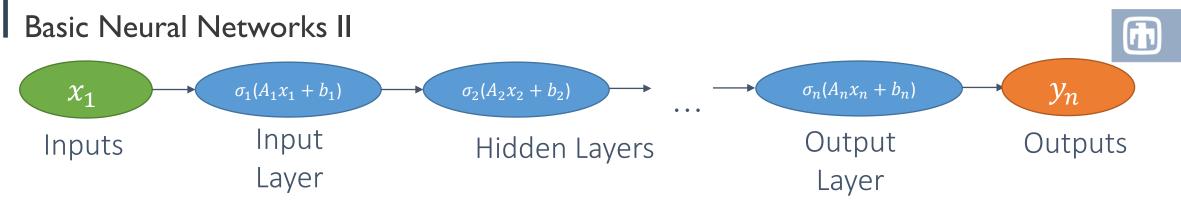
But what about neural networks?

• Building block of a NN is a neuron (or perceptron), often drawn like this:

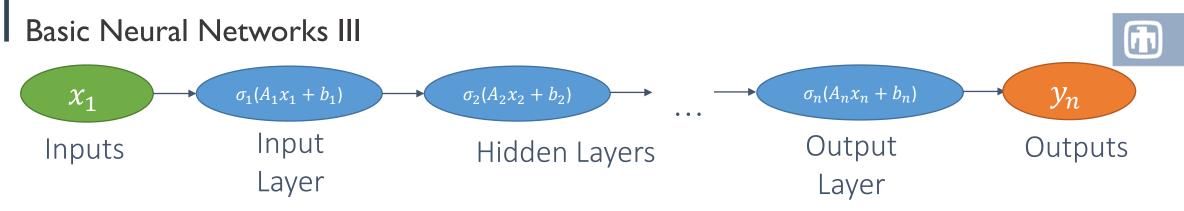


- Some nonlinear function, σ , of a matvec (with weight matrix A) and vector add.
- Feedforward Network / Multi-Layer Perceptron (MLP) is a bunch of these:





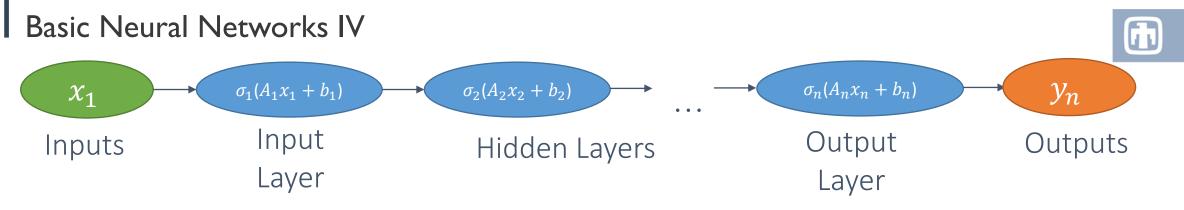
- NNs are often drawn with multiple "blocks" in each layer.
- This means each A_i can be a different size.
- Lots of nonlinear σ_i functions are available (e.g. sigmoid, ReLu, etc.).
- Done correctly, this can approximate any continuous function (similar to Stone-Weierstrass for polynomials).



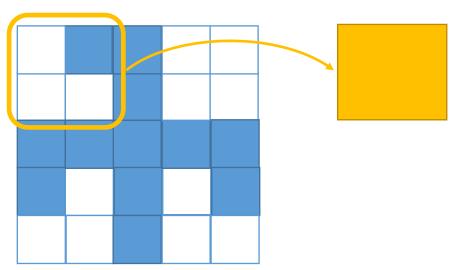
- These models are "trained" by choosing parameters A_i and b_i to satisfy some objective, called a "loss function."
- Given training data, output pairs (d_i, \hat{y}_i) , for i=1... m, you might get:

$$\min_{A_1...,A_n,b_1...,b_n} \sum_{i=1}^m \|M(d_i) - \hat{y}_i\|$$

- Where *M* is the MLP model and ||. || is the norm of your choice.
- Note that this model is *dense* or "fully connected."

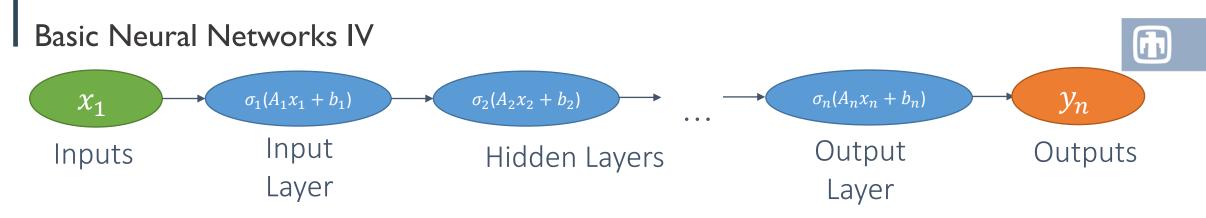


- Layers need not be dense / fully connected.
- Convolutional networks (CNNs) connect *spatially* nearby items (tiled over the inputs):



Corresponds to a banded matrix w/ the same values in each row, but shifted.

• Recurrent neural networks (RNN) connect *temporally* nearby items.



- The downside here is that we've fixed *all* of the dimensions.
 - MLP: The input size is fixed.
 - CNN: The number of neighbors (and their relations is fixed).
 - RNN: The temporal recurrence length is fixed (though this is less of a problem).
- Our real-world problems don't have fixed meshes!

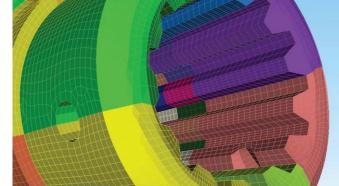


Image from SNL Lab News, March 2014.

• For unstructured meshes, this is not going to work unless you are very, very witty

• Alternative Solution: Graph Neural Networks (GNNs).

Graph Neural Networks I

- Graphs have vertices and edges.
 - We will consider directed graphs.

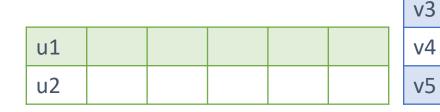


v2

- GNNs add...
 - Immutable attributes associated w/ each vertex + edge.
 - Mutable attributes associated with each vertex + edge.
 - Global variables with associated attributes.

Sample GNN with:

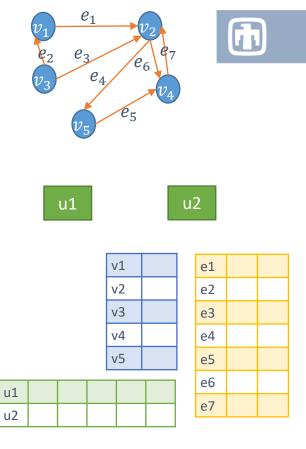
- 5 vertices (1 attribute each)
- 7 edges (2 attributes each)
- 2 globals (5 attributes each)



e1		
e2		
e3		
e4		
e5		
e6		
e7		

Graph Neural Networks II

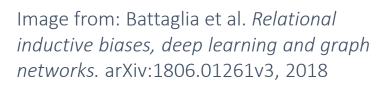
- A GNN block has 3 update functions and 3 aggregation functions
- Updates (trained)
 - ϕ^{v} : Update vertex from its attributes, aggregated edge attributes, and globals.
 - ϕ^e : Update edge from its attributes, neighboring vertex attributes, and globals.
 - ϕ^u : Update globals from aggregated edge and vertex attributes.
 - Fixed size inputs and outputs.
- Aggregation functions (not trained)
 - $\rho^{e \rightarrow v}$: Aggregate edge neighbors to vertex.
 - $\rho^{e \to u}$: Aggregate all edges to globals.
 - $\rho^{v \to u}$: Aggregate all nodes to globals.
 - Variable size inputs and fixed size outputs.
 - Note: Since each edge always has two neighboring nodes, node attributes are not aggregated to edges.

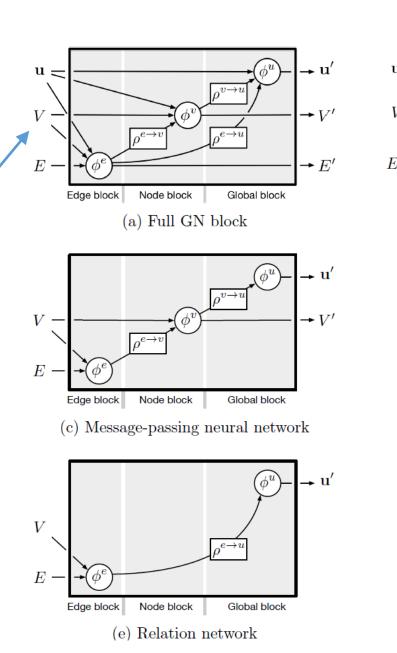


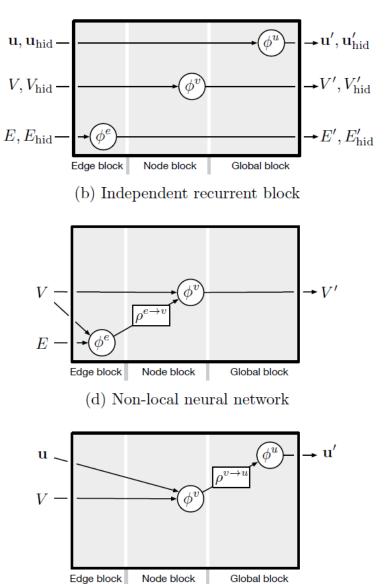
Graph Neural Networks III

These can be composed in almost any order.

Most general **/**

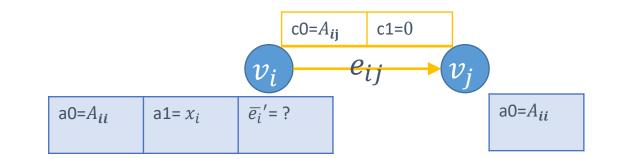






(f) Deep set

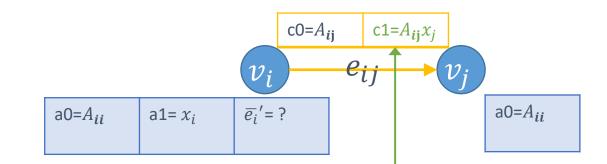
- Let's consider a very simple example: a sparse matrix vector product.
- Remember: A matrix is a graph (off-diagonal entries are considered edges).
- Vertex *i* attributes:
 - a0: 1 immutable, *A*_{*ii*}.
 - a1: 1 mutable, x_i on input, b_i on output.
- Edge (*i*,*j*) attributes:
 - c0: 1 immutable, A_{ij} .
 - c1: 1 mutable, 0 on input, $A_{ij} x_j$ on output.
- Global attributes: none



- Update Edges: $c1 = \phi^e(e_{ij}, v_i, v_j) = c0(e_{ij})a1(v_j)$
- Agg Edge-to-Node: $\overline{e_i}' = \rho^{e \to v} (e_{ij} \forall j) = \sum_{j \neq i} c \mathbb{1}(e_{ij})$
- Nodes: $a1 = \phi^{\nu}(\overline{e_i}', v_i) = a0(v_i) a1(v_i) + \overline{e_i}'$

This is a trivial example and has no parameters, but...

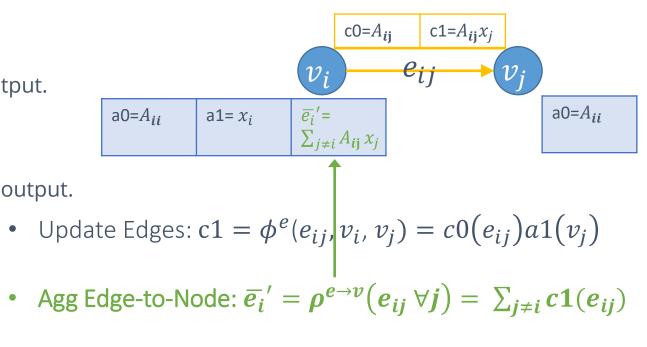
- Let's consider a very simple example: a sparse matrix vector product.
- Remember: A matrix is a graph (off-diagonal nodes are considered edges).
- Vertex *i* attributes:
 - a0: 1 immutable, *A*_{*ii*}.
 - a1: 1 mutable, x_i on input, b_i on output.
- Edge (*i*,*j*) attributes:
 - c0: 1 immutable, A_{ij} .
 - c1: 1 mutable, 0 on input, $A_{ij} x_j$ on output.
- Global attributes: none



- Update Edges: $\mathbf{c1} = \boldsymbol{\phi}^{e}(e_{ij}, v_i, v_j) = c\mathbf{0}(e_{ij})a\mathbf{1}(v_j)$
- Agg Edge-to-Node: $\overline{e_i}' = \rho^{e \to v} (e_{ij} \forall j) = \sum_{j \neq i} c 1(e_{ij})$
- Nodes: $a1 = \phi^{\nu}(\overline{e_i}', v_i) = a0(v_i) a1(v_i) + \overline{e_i}'$

This is a trivial example and has no parameters, but...

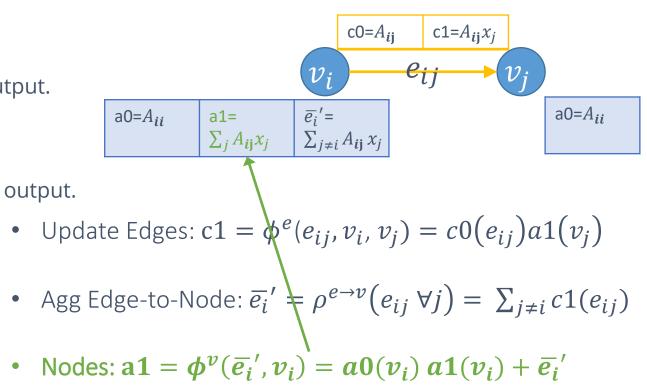
- Let's consider a very simple example: a sparse matrix vector product.
- Remember: A matrix is a graph (off-diagonal nodes are considered edges).
- Vertex *i* attributes:
 - a0: 1 immutable, *A*_{*ii*}.
 - a1: 1 mutable, x_i on input, b_i on output.
- Edge (*i*,*j*) attributes:
 - c0: 1 immutable, A_{ij} .
 - c1: 1 mutable, 0 on input, $A_{ij} x_j$ on output.
- Global attributes: none



• Nodes: $a1 = \phi^{\nu}(\overline{e_i}', v_i) = a0(v_i) a1(v_i) + \overline{e_i}'$

This is a trivial example and has no parameters, but...

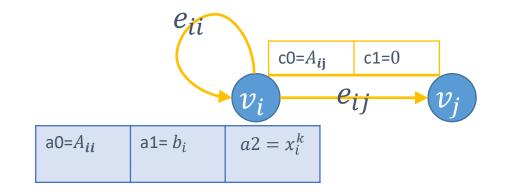
- Let's consider a very simple example: a sparse matrix vector product.
- Remember: A matrix is a graph (off-diagonal nodes are considered edges).
- Vertex *i* attributes:
 - a0: 1 immutable, *A*_{*ii*}.
 - a1: 1 mutable, x_i on input, b_i on output.
- Edge (*i*,*j*) attributes:
 - c0: 1 immutable, A_{ij} .
 - c1: 1 mutable, 0 on input, $A_{ij} x_j$ on output.
- Global attributes: none



This is a trivial example and has no parameters, but...

Iterative Method: Jacobi Iteration: $x_{k+1} = x_k + \omega D^{-1}(b - A x_k)$

- Vertex *i* attributes:
 - a0, a1: 2 immutable, *A*_{*ii*}, *b*_{*i*}
 - a2: 1 mutable, x_i^k on input, x_i^{k+1} on output.
- Edge (*i*,*j*) attributes:
 - c0: 1 immutable, A_{ij} .
 - c1: 1 mutable, 0 on input, $A_{ij} x_i^k$ on output.
- Global attributes:
 - d0: 1 immutable: *ω*.

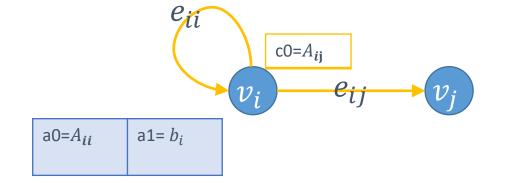


- Update Edges: $c1 = \phi^e(e_{ij}, v_i, v_j) = c0(e_{ij})a1(v_j)$
- Agg Edge-to-Node: $\overline{e_i}' = \rho^{e \to v} (e_{ij} \forall j) = \sum_j c \mathbb{1}(e_{ij})$

• Nodes:
$$a1 = \phi^{v}(\overline{e_i}', v_i) = a2(v_i) + \frac{d0(a1(v_i) - \overline{e_i}')}{a0(v_i)}$$

A Trainable Jacobi Iteration: $x_{k+1} = x_k + \omega D^{-1}(b - A x_k)$

- Vertex *i* attributes:
 - a0: 1 immutable, A_{ii},
 - a1: 1 mutable, b_i on input, d_i on output.
- Edge (*i*,*j*) attributes:
 - c0: 1 immutable, A_{ij} .
- Global attributes:
 - d0: 1 immutable: ω .
- Special Edge aggregation:
 - Compute min, mean, sum & max of edges.



- Agg Edge-to-Node: $\overline{e_i}' = \rho^{e \to v} (e_{ij} \forall j) = [min, mean, sum, max]$
- Nodes: $a1 = \phi^{v}(\overline{e_i}', v_i) = 3$ Level NN

Goal: Choose local damping in lieu of doing an EV estimate for $\,\omega$

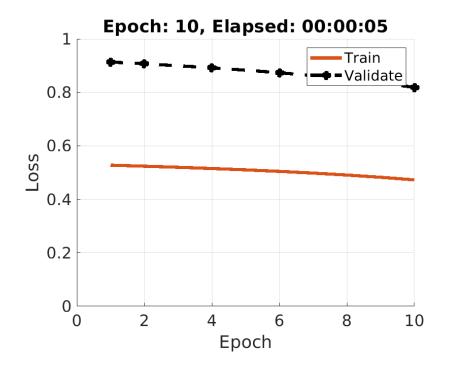
A Trainable Jacobi Iteration: $x_{k+1} = x_k + \omega D^{-1}(b - A x_k)$

• Per-matrix loss function: Damping Factor

$$\left\|I - \omega D^{-1}A\right\|_2$$

- *D*=*GNN(A)* here is our trained "diagonal."
- Toy data: 5x5 FEM Laplacians w/ varying y stretch.
- Method: 10 epochs of Adam w/ LR=0.01.
- Test Data:
 - DF Fixed $\omega = 2/3$: 0.82.
 - Trained Diagonal DF: 0.79.
 - Optimal ω DF: 0.77.

(Done in Matlab)



Where can we go from here?

- Many matrix algorithms can be recast as GNNs!
 - OK. Not anything ordering dependent like Gauss-Seidel, but still.

- Once we have that, we can turn the crank on AI/ML to...
 - Choose parameters.
 - Combine multiple objective functions.
 - Create *new* data-driven algorithms inspired by (and informed by) old ones.
- GNN software is available in...
 - PyTorch: Geometric, Deep Graph Library.
 - TensorFlow: graph_nets and TensorFlow GNN.
 - Matlab: Deep Learning Toolbox.

Warning: Software support for GNNs is still a little patchy!

• We hope to see this class of algorithms make their way into Trilinos/MueLu!

Sample GNNs Apps

- Node/Graph classification
- Computer vision (object relations)
- Natural language
- Traffic forecasting
- Recommender systems
- Molecular structure