
P R E S E N T E D B Y

Sandia National Laboratories is a multimission
laboratory managed and operated by National

Technology and Engineering Solutions of Sandia
LLC, a wholly owned subsidiary of Honeywell
International Inc. for the U.S. Department of

Energy’s National Nuclear Security Administration
under contract DE-NA0003525.

Machine Learning & Trilinos

Chr i s S i e fe r t

SAND2022-14817 C

As per Randall Munroe…

https://xkcd.com/1838/
This comic is licensed under a Creative Commons

Attribution-NonCommercial 2.5 License. See

https://xkcd.com/license.html

• There’s an interface to Avatar Tools in Trilinos/MueLu
• URL: https://github.com/sandialabs/avatar

• Lead developer: Philip Kegelmeyer.

• Ensembles of decision trees with a ton of bells & whistles.

• C/C++ code (with MPI support).

• Can be used either as TPL or a external package (ala Drekar).

• Why ensembles of decision trees?
• Fast & efficient.

• Work well with small-to-moderate size datasets.

• Ensembles give a lot of accuracy-boosting power.

• Usually more explainable than neural networks.

Machine Learning Actually In Trilinos (FY19)

https://github.com/sandialabs/avatar

MueLu/Avatar Workflow

App: Generates
features

MueLu: Call Avatar

Avatar: Performs
classification

MueLu: Choose
ideal options based

on classification

Online PhaseOffline Phase

App: Run lots of
problems & features

MueLu: Run lots of
options per problem

Avatar: Trains model
on offline data

• Choose a single MueLu parameter based on 4 mesh features

• These are five test problems unrelated to the training data.

Simple Example (1)

• Since expl had an out-of-bounds feature no acceptable
options were found by the heuristics.

• Defaulted to a “safe” answer (namely 0).

Simple Example (2)

• Iteration counts (low = good)

• Heuristic 2 got optimal results except for out-of-bounds expl.

Simple Example (3)

But what about
neural networks?

• Building block of a NN is a neuron (or perceptron), often drawn like this:

• Some nonlinear function, s, of a matvec (with weight matrix A) and vector add.

• Feedforward Network / Multi-Layer Perceptron (MLP) is a bunch of these:

Basic Neural Networks I

x1

x2

x4

x3
s(Ax+b)

𝑥1 𝜎1(𝐴1𝑥1 + 𝑏1) 𝜎2(𝐴2𝑥2 + 𝑏2) 𝜎𝑛(𝐴𝑛𝑥𝑛 + 𝑏𝑛)… 𝑦𝑛

Inputs OutputsInput
Layer

Output
Layer

Hidden Layers

• NNs are often drawn with multiple “blocks” in each layer.

• This means each 𝐴𝑖 can be a different size.

• Lots of nonlinear 𝜎𝑖 functions are available (e.g. sigmoid, ReLu, etc.).

• Done correctly, this can approximate any continuous function (similar to Stone-
Weierstrass for polynomials).

Basic Neural Networks II

𝑥1 𝜎1(𝐴1𝑥1 + 𝑏1) 𝜎2(𝐴2𝑥2 + 𝑏2) 𝜎𝑛(𝐴𝑛𝑥𝑛 + 𝑏𝑛)
… 𝑦𝑛

Inputs OutputsInput
Layer

Output
Layer

Hidden Layers

• These models are “trained” by choosing parameters 𝐴𝑖 and 𝑏𝑖 to satisfy some objective,
called a “loss function.”

• Given training data, output pairs (𝑑𝑖, ොy𝑖), for i=1… m, you might get:

• Where M is the MLP model and . is the norm of your choice.

• Note that this model is dense or “fully connected.”

Basic Neural Networks III

𝑥1 𝜎1(𝐴1𝑥1 + 𝑏1) 𝜎2(𝐴2𝑥2 + 𝑏2) 𝜎𝑛(𝐴𝑛𝑥𝑛 + 𝑏𝑛)
… 𝑦𝑛

Inputs OutputsInput
Layer

Output
Layer

Hidden Layers

min
𝐴1…,𝐴𝑛,𝑏1…,𝑏𝑛

෍

𝑖=1

𝑚

𝑀 𝑑𝑖 − ොy𝑖

• Layers need not be dense / fully connected.

• Convolutional networks (CNNs) connect spatially nearby items (tiled over the inputs):

• Recurrent neural networks (RNN) connect temporally nearby items.

Basic Neural Networks IV

𝑥1 𝜎1(𝐴1𝑥1 + 𝑏1) 𝜎2(𝐴2𝑥2 + 𝑏2) 𝜎𝑛(𝐴𝑛𝑥𝑛 + 𝑏𝑛)
… 𝑦𝑛

Inputs OutputsInput
Layer

Output
Layer

Hidden Layers

Corresponds to a banded
matrix w/ the same values
in each row, but shifted.

• Our real-world problems don’t have fixed meshes!

• For unstructured meshes, this is not going to work unless you are
very, very witty

• Alternative Solution: Graph Neural Networks (GNNs).

Basic Neural Networks IV

𝑥1 𝜎1(𝐴1𝑥1 + 𝑏1) 𝜎2(𝐴2𝑥2 + 𝑏2) 𝜎𝑛(𝐴𝑛𝑥𝑛 + 𝑏𝑛)
… 𝑦𝑛

Inputs OutputsInput
Layer

Output
Layer

Hidden Layers

• The downside here is that we’ve fixed all of the dimensions.
• MLP: The input size is fixed.

• CNN: The number of neighbors (and their relations is fixed).

• RNN: The temporal recurrence length is fixed (though this is less of a problem).

Image from SNL Lab News, March 2014.

• Graphs have vertices and edges.
• We will consider directed graphs.

• GNNs add…
• Immutable attributes associated w/ each vertex + edge.

• Mutable attributes associated with each vertex + edge.

• Global variables with associated attributes.

Graph Neural Networks I

𝑣1

𝑣5

𝑣4
𝑣3

𝑣2
𝑒7𝑒6

𝑒5

𝑒4

𝑒3𝑒2

𝑒1

e1

e2

e3

e4

e5

e6

e7

v1

v2

v3

v4

v5

u1 u2

u1

u2

Sample GNN with:
• 5 vertices (1 attribute each)
• 7 edges (2 attributes each)
• 2 globals (5 attributes each)

• A GNN block has 3 update functions and 3 aggregation functions

• Updates (trained)
• 𝜙𝑣: Update vertex from its attributes, aggregated edge attributes, and globals.

• 𝜙𝑒: Update edge from its attributes, neighboring vertex attributes, and globals.

• 𝜙𝑢: Update globals from aggregated edge and vertex attributes.

• Fixed size inputs and outputs.

• Aggregation functions (not trained)
• 𝜌𝑒→𝑣: Aggregate edge neighbors to vertex.

• 𝜌𝑒→𝑢: Aggregate all edges to globals.

• 𝜌𝑣→𝑢: Aggregate all nodes to globals.

• Variable size inputs and fixed size outputs.

• Note: Since each edge always has two neighboring nodes, node attributes are not aggregated to edges.

Graph Neural Networks II 𝑣1

𝑣5

𝑣4
𝑣3

𝑣2
𝑒7𝑒6

𝑒5

𝑒4

𝑒3𝑒2

𝑒1

e1

e2

e3

e4

e5

e6

e7

v1

v2

v3

v4

v5

u1 u2

u1

u2

These can be
composed in almost
any order.

Graph Neural Networks III

Image from: Battaglia et al. Relational
inductive biases, deep learning and graph
networks. arXiv:1806.01261v3, 2018

Most general

• Let’s consider a very simple example: a sparse matrix vector product.

• Remember: A matrix is a graph (off-diagonal entries are considered edges).

Matrix-as-a-Graph: Matrix-Vector Product Example (Ax = b)

• Vertex i attributes:
• a0: 1 immutable, 𝐴𝑖𝑖.

• a1: 1 mutable, 𝑥𝑖 on input, 𝑏𝑖 on output.

• Edge (i,j) attributes:
• c0: 1 immutable, 𝐴𝑖𝑗.

• c1: 1 mutable, 0 on input, 𝐴𝑖𝑗 𝑥𝑗 on output.

• Global attributes: none • Update Edges: c1 = 𝜙𝑒(𝑒𝑖𝑗 , 𝑣𝑖, 𝑣𝑗) = 𝑐0 𝑒𝑖𝑗 𝑎1 𝑣𝑗

• Agg Edge-to-Node: ഥ𝑒𝑖
′ = 𝜌𝑒→𝑣 𝑒𝑖𝑗 ∀𝑗 = σ𝑗≠𝑖 𝑐1(𝑒𝑖𝑗)

• Nodes: a1 = 𝜙𝑣 ഥ𝑒𝑖
′, 𝑣𝑖 = 𝑎0(𝑣𝑖) 𝑎1(𝑣𝑖) + ഥ𝑒𝑖

′

This is a trivial example and has no parameters, but…

𝑣𝑖 𝑣𝑗𝑒𝑖𝑗
a0=𝐴𝒊𝒊 a1= 𝑥𝑖 ഥ𝑒𝑖

′= ?

c0=𝐴𝒊𝐣 c1=0

a0=𝐴𝒊𝒊

• Let’s consider a very simple example: a sparse matrix vector product.

• Remember: A matrix is a graph (off-diagonal nodes are considered edges).

Matrix-as-a-Graph: Matrix-Vector Product Example (Ax = b)

• Vertex i attributes:
• a0: 1 immutable, 𝐴𝑖𝑖.

• a1: 1 mutable, 𝑥𝑖 on input, 𝑏𝑖 on output.

• Edge (i,j) attributes:
• c0: 1 immutable, 𝐴𝑖𝑗.

• c1: 1 mutable, 0 on input, 𝐴𝑖𝑗 𝑥𝑗 on output.

• Global attributes: none • Update Edges: 𝐜𝟏 = 𝝓𝒆(𝒆𝒊𝒋, 𝒗𝒊, 𝒗𝒋) = 𝒄𝟎 𝒆𝒊𝒋 𝒂𝟏 𝒗𝒋

• Agg Edge-to-Node: ഥ𝑒𝑖
′ = 𝜌𝑒→𝑣 𝑒𝑖𝑗 ∀𝑗 = σ𝑗≠𝑖 𝑐1(𝑒𝑖𝑗)

• Nodes: a1 = 𝜙𝑣 ഥ𝑒𝑖
′, 𝑣𝑖 = 𝑎0(𝑣𝑖) 𝑎1(𝑣𝑖) + ഥ𝑒𝑖

′

This is a trivial example and has no parameters, but…

𝑣𝑖 𝑣𝑗𝑒𝑖𝑗
a0=𝐴𝒊𝒊 a1= 𝑥𝑖 ഥ𝑒𝑖

′= ?

c0=𝐴𝒊𝐣 c1=𝐴𝒊𝐣𝑥𝑗

a0=𝐴𝒊𝒊

• Let’s consider a very simple example: a sparse matrix vector product.

• Remember: A matrix is a graph (off-diagonal nodes are considered edges).

Matrix-as-a-Graph: Matrix-Vector Product Example (Ax = b)

• Vertex i attributes:
• a0: 1 immutable, 𝐴𝑖𝑖.

• a1: 1 mutable, 𝑥𝑖 on input, 𝑏𝑖 on output.

• Edge (i,j) attributes:
• c0: 1 immutable, 𝐴𝑖𝑗.

• c1: 1 mutable, 0 on input, 𝐴𝑖𝑗 𝑥𝑗 on output.

• Global attributes: none • Update Edges: c1 = 𝜙𝑒(𝑒𝑖𝑗 , 𝑣𝑖, 𝑣𝑗) = 𝑐0 𝑒𝑖𝑗 𝑎1 𝑣𝑗

• Agg Edge-to-Node: ഥ𝒆𝒊
′ = 𝝆𝒆→𝒗 𝒆𝒊𝒋 ∀𝒋 = σ𝒋≠𝒊 𝒄𝟏(𝒆𝒊𝒋)

• Nodes: a1 = 𝜙𝑣 ഥ𝑒𝑖
′, 𝑣𝑖 = 𝑎0(𝑣𝑖) 𝑎1(𝑣𝑖) + ഥ𝑒𝑖

′

This is a trivial example and has no parameters, but…

𝑣𝑖 𝑣𝑗𝑒𝑖𝑗
a0=𝐴𝒊𝒊 a1= 𝑥𝑖 ഥ𝑒𝑖

′=
σ𝑗≠𝑖𝐴𝒊𝐣 𝑥𝑗

c0=𝐴𝒊𝐣 c1=𝐴𝒊𝐣𝑥𝑗

a0=𝐴𝒊𝒊

• Let’s consider a very simple example: a sparse matrix vector product.

• Remember: A matrix is a graph (off-diagonal nodes are considered edges).

Matrix-as-a-Graph: Matrix-Vector Product Example (Ax = b)

• Vertex i attributes:
• a0: 1 immutable, 𝐴𝑖𝑖.

• a1: 1 mutable, 𝑥𝑖 on input, 𝑏𝑖 on output.

• Edge (i,j) attributes:
• c0: 1 immutable, 𝐴𝑖𝑗.

• c1: 1 mutable, 0 on input, 𝐴𝑖𝑗 𝑥𝑗 on output.

• Global attributes: none • Update Edges: c1 = 𝜙𝑒(𝑒𝑖𝑗 , 𝑣𝑖, 𝑣𝑗) = 𝑐0 𝑒𝑖𝑗 𝑎1 𝑣𝑗

• Agg Edge-to-Node: ഥ𝑒𝑖
′ = 𝜌𝑒→𝑣 𝑒𝑖𝑗 ∀𝑗 = σ𝑗≠𝑖 𝑐1(𝑒𝑖𝑗)

• Nodes: 𝐚𝟏 = 𝝓𝒗 ഥ𝒆𝒊
′, 𝒗𝒊 = 𝒂𝟎(𝒗𝒊) 𝒂𝟏(𝒗𝒊) + ഥ𝒆𝒊

′

This is a trivial example and has no parameters, but…

𝑣𝑖 𝑣𝑗𝑒𝑖𝑗
a0=𝐴𝒊𝒊 a1=

σ𝑗𝐴𝒊𝐣𝑥𝑗

ഥ𝑒𝑖
′=

σ𝑗≠𝑖𝐴𝒊𝐣 𝑥𝑗

c0=𝐴𝒊𝐣 c1=𝐴𝒊𝐣𝑥𝑗

a0=𝐴𝒊𝒊

Iterative Method: Jacobi Iteration: 𝑥𝑘+1 = 𝑥𝑘 + 𝜔𝐷−1(𝑏 −A 𝑥𝑘)

• Vertex i attributes:
• a0, a1: 2 immutable, 𝐴𝑖𝑖 , 𝑏𝑖

• a2: 1 mutable, 𝑥𝑖
𝑘 on input, 𝑥𝑖

𝑘+1 on output.

• Edge (i,j) attributes:
• c0: 1 immutable, 𝐴𝑖𝑗.

• c1: 1 mutable, 0 on input, 𝐴𝑖𝑗 𝑥𝑖
𝑘 on output.

• Global attributes:
• d0: 1 immutable: 𝜔.

• Update Edges: c1 = 𝜙𝑒(𝑒𝑖𝑗 , 𝑣𝑖, 𝑣𝑗) = 𝑐0 𝑒𝑖𝑗 𝑎1 𝑣𝑗

• Agg Edge-to-Node: ഥ𝑒𝑖
′ = 𝜌𝑒→𝑣 𝑒𝑖𝑗 ∀𝑗 = σ𝑗 𝑐1(𝑒𝑖𝑗)

• Nodes: a1 = 𝜙𝑣 ഥ𝑒𝑖
′, 𝑣𝑖 = 𝑎2 𝑣𝑖 +

𝑑0 𝑎1 𝑣𝑖 −ഥ𝑒𝑖
′

𝑎0(𝑣𝑖)

𝑣𝑖 𝑣𝑗𝑒𝑖𝑗
a0=𝐴𝒊𝒊 a1= 𝑏𝑖 𝑎2 = 𝑥𝑖

𝑘

c0=𝐴𝒊𝐣 c1=0

𝑒𝑖𝑖

A Trainable Jacobi Iteration: 𝑥𝑘+1 = 𝑥𝑘 + 𝜔𝐷−1(𝑏 −A 𝑥𝑘)

• Vertex i attributes:
• a0: 1 immutable, 𝐴𝑖𝑖 ,

• a1: 1 mutable, 𝑏𝑖 on input, 𝑑𝑖 on
output.

• Edge (i,j) attributes:
• c0: 1 immutable, 𝐴𝑖𝑗.

• Global attributes:
• d0: 1 immutable: 𝜔.

• Special Edge aggregation:
• Compute min, mean, sum & max of

edges.

• Agg Edge-to-Node: ഥ𝑒𝑖
′ = 𝜌𝑒→𝑣 𝑒𝑖𝑗 ∀𝑗 = [𝑚𝑖𝑛,𝑚𝑒𝑎𝑛, 𝑠𝑢𝑚,𝑚𝑎𝑥]

• Nodes: a1 = 𝜙𝑣 ഥ𝑒𝑖
′, 𝑣𝑖 = 3 Level NN

𝑣𝑖 𝑣𝑗𝑒𝑖𝑗
a0=𝐴𝒊𝒊 a1= 𝑏𝑖

c0=𝐴𝒊𝐣

𝑒𝑖𝑖

L1: 6x3 L2: 3x3 L3: 3x1
a0 a1 min mean sum max

di

Goal: Choose local damping in lieu of doing an EV estimate for 𝜔

A Trainable Jacobi Iteration: 𝑥𝑘+1 = 𝑥𝑘 + 𝜔𝐷−1(𝑏 −A 𝑥𝑘)

• Per-matrix loss function: Damping Factor

• D=GNN(A) here is our trained “diagonal.”

• Toy data: 5x5 FEM Laplacians w/ varying y stretch.

• Method: 10 epochs of Adam w/ LR=0.01.

• Test Data:
• DF Fixed 𝜔 = 2/3: 0.82.

• Trained Diagonal DF: 0.79.

• Optimal 𝜔 DF: 0.77.

𝐼 − 𝜔𝐷−1𝐴
2

(Done in Matlab)

• Many matrix algorithms can be recast as GNNs!
• OK. Not anything ordering dependent like Gauss-Seidel, but still.

• Once we have that, we can turn the crank on AI/ML to…
• Choose parameters.

• Combine multiple objective functions.

• Create new data-driven algorithms inspired by (and informed by) old ones.

• GNN software is available in…
• PyTorch: Geometric, Deep Graph Library.

• TensorFlow: graph_nets and TensorFlow GNN.

• Matlab: Deep Learning Toolbox.

• We hope to see this class of algorithms make their way into Trilinos/MueLu!

Where can we go from here?

Warning: Software support for GNNs is
still a little patchy!

Sample GNNs Apps
• Node/Graph classification
• Computer vision (object

relations)
• Natural language
• Traffic forecasting
• Recommender systems
• Molecular structure

