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Purpose and outline

Highlight the interactions between Trilinos and Mirage, a research project and an easy-

to-use high-performance software for the design of electromagnetic metamaterials.
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HIGHLIGHTS

§ Mirage:  Team, goals and software capabilities.

§ Trilinos-based components:  (𝔽𝔼𝕄)³ and MrHyDE.

§ A sampling of interactions and collaborations between Trilinos and Mirage.

§ New products:  Extreme-scale meshing with Zellij, plug-n-play Trilinos with containers.

§ Looking into the future:  Reducing memory footprint.



Mirage is a DARPA-funded research project and software3
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GOAL Electromagnetic devices
featuring nanoscale structures.

EXAMPLE A micron-thin lens
composed of millions of atoms.
PURPOSE Weight/space savings. METHOD Design atoms, tile, simulate, optimize.
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§ ultiscale Inverse Rapid Group-theory for Engineered-metamaterials
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Mirage is a product of interactions with the world’s best 4

AWARDS AND RECOGNITIONS
2018: DARPA D60 Showcase
2019: R&D 100 Award
2020: Laser World Focus Featured Article
2020: Laser World Focus Platinum Award
2020/2021: FLC Regional Tech Development Nomination
2021: HPC-Report  Featured Article
2021: FLC Tech Transfer Mid Continent Award
2021: SNL Partnerships Annual Report Featured Article
2022: FLC National Award Nomination

Mirage large-scale 
simulation is powered by



Mirage capabilities currently support night-vision R&D 

CAPABILITIES Geometry/CAD    Atom meshing with Cubit    Frequency-domain EM simulation
Group-symmetry design    Nonlinear/dispersion modeling    Device layout and tiling
Extreme-scale meshing via stitching    Extreme-scale time-domain EM simulation
Shape and topology optimization    Design and control of EM sources
Lens design with interface to Zemax Laptop/Workstation/HPC
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Zemax Ray Tracing Zemax

NIGHT-VISION OPTICAL TRAIN

Meta-optic

TRILINOS SUPPORTS EXTREME-SCALE EM COMPONENTS

(𝔽𝔼𝕄)³

Panzer
Seacas

etc.



Small-scale lens simulation6

§ Cross section of a lens.

§ Planewave source
illuminating the lens
from bottom of domain.

§ Roughly 1 billion
variables.

§ Runtime: 2 hours on
50 HPC nodes.

§ Primary focal spot,
secondary focal spot,
edge effects.

§ Real optics need simulations
with trillions of variables.



Electromagnetic source design and control7

GOAL Hide the thunderbird-shaped EM source
by applying a current source in the four
circular control regions.

METHOD Solve an optimal control problem.

Inactive Active Control



(𝔽𝔼𝕄)³ is Mirage’s 1st-gen extreme-scale engine 8

Maxwell’s Equations Weak Form

Mixed algebraic system We solve the mixed 
system using GMRES 
preconditioned with 
multigrid for the E-field 
Schur complements.

• Discretize E-field using Nedelec edge 
elements, and B-field using Raviart-
Thomas face elements.

• Discretize time using implicit methods.
• Use variants of the scalable MueLu

RefMaxwell multigrid preconditioner to 
solve edge Schur complement systems.

HISTORY
(𝔽𝔼𝕄)³ grew out of miniEM, 
and it was a great launch 
platform for the Mirage 
time-domain capability.  
Moving toward trillions of 
finite elements requires a 
more fine-grained tool.

SCALABLE PRECONDITIONERS FOR STRUCTURE PRESERVING
DISCRETIZATIONS OF MAXWELL EQUATIONS IN FIRST ORDER FORM

EDWARD G. PHILLIPS , JOHN N. SHADID , AND ERIC C. CYR

Abstract.
Multiple physical time-scales can arise in electromagnetic simulations when dissipative e↵ects are introduced through bound-

ary conditions, when currents follow external time-scales, and when material parameters vary spatially. In such scenarios, the
time-scales of interest may be much slower than the fastest time-scales supported by the Maxwell equations, therefore making
implicit time integration an e�cient approach. The use of implicit temporal discretizations results in linear systems in which
fast time-scales, that severely constrain the stability of an explicit method, can manifest as so-called “sti↵ modes.” This present
study proposes a new block preconditioner for structure preserving (also termed physics compatible) discretizations of the
Maxwell equations in first order form. The intent of the preconditioner is to enable the e�cient solution of multiple-time-scale
Maxwell type systems. An additional benefit of the developed preconditioner is that it requires only a traditional multigrid
method for its subsolves, and compares well against alternative approaches that rely on specialized edge-based multigrid rou-
tines that may not be readily available. Results demonstrate parallel scalability at large electromagnetic wave CFL numbers
on a variety of test problems.

1. Introduction. This study considers algorithmic technology that can be used for e�cient implicit
integration of the Maxwell equations. In particular, this work focuses on scalable iterative solvers for large-
scale linear systems arising from a compatible discretization of the Maxwell equations in first order form. This
setting is quite challenging with the existence of both the H(curl) and H(div) spaces for discretizing Maxwell
equations and the complexity of the application of algebraic multilevel type methods for the scalable solution
of these systems. The goal is to develop iterative linear solvers that perform well even when the time-step is
much larger than the explicit limit dictated by the fastest time-scale, since in many electromagnetic systems,
a multiple time-scale response can be obtained. For instance, boundary conditions can result in dissipative
e↵ects at a di↵erent time-scale than light waves [2, 8]. Additionally, non-uniform material parameters, such
as permeability and permittivity, result in a variable speed of light. Source currents may also induce time-
scales slower than the speed of light, such as when an external source is applied or when current densities
are obtained from multi-fluid plasma models [11, 34]. In such situations, while Maxwell terms that induce
light waves are active, the time-scale of interest may be much slower than the speed of light time scales. In
this case, explicit time-integration is restricted by the stability limit associated with light waves which may
be overly restrictive. In this context faster solutions may be obtained using implicit time-integration with
larger time-steps, and robust linear solvers are imperative to good performance.

For solution of electromagnetics systems, both for magnetohydrodynamics (MHD) as well as for full
Maxwell electromagnetics systems, structure preserving (physics compatible) discretizations have the ad-
vantage that the solenoidal involution r · B = 0 can be enforced to machine precision [16, 22]. The exact
preservation of this condition is considered important because it is a precise physical law that is induced by
the Maxwell system. It has furthermore been shown, in the context of MHD, that having r ·B 6= 0 at the
discrete level can result in large errors in the solution [7] and therefore many computational approximations
are chosen to enforce this condition directly. The class of compatible discretization considered in this work
employs Nédélec edge elements [27,28] for electric fields and Raviart-Thomas face elements [30] for magnetic
fields, in a manner consistent with the discrete algebraic topology framework summarized in [13]. While
the use of such elements contributes to the consistency of the method, it also complicates the structure of
linear systems as compared to nodal finite element discretizations, thus adding to the challenge of developing
robust linear solvers.

Considering the Maxwell equations, in the most general form [18]

@D
@t �r⇥H = �J,(1a)

r ·D = ⇢,(1b)
@B
@t +r⇥E = 0,(1c)

r ·B = 0.(1d)

The unknowns D,B,E, and H are the electric induction, magnetic induction, electric field, and magnetic
field respectively. The current density and the charge density are denoted by J and ⇢, which satisfy the
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conservation of electric charge equation

(2) @⇢
@t +r · J = 0.

The fields D and H may be eliminated using a closure model for the medium. For instance, in an electrically
conducting medium, the relations

(3) D = "E, H = 1
µB,

where " is the electric permittivity and µ is the magnetic permeability. Then the Maxwell equations reduce
to the form

@("E)
@t �r⇥

⇣
1
µB

⌘
= �J,(4a)

r · ("E) = ⇢,(4b)
@B
@t +r⇥E = 0,(4c)

r ·B = 0.(4d)

To simplify the discussion, " and µ will be assumed to be constant throughout text. Then the Ampère
equation (4a) can be written as

(5) 1
c2

@E
@t �r⇥B = �µJ,

where c = 1p
"µ is the speed of light. This assumption preserves the structure of the equations and allows

for challenging multiple time-scale problems while simplifying the development of the proposed methods.
The analysis presented in this work can be easily generalized to the case of non-uniform and even time-
varying " and µ, and the authors believe that the increased clarity of the resulting discussion warrants the
simplification for this particular contribution.

The development of implicit solvers for the first order Maxwell equations has been pursued in [1], and
solvers have been developed for a magnetohydrodynamic system which includes this form of the Maxwell
equations in [21]. In both cases, performance is demonstrated to time-scales on the order of ten times longer
than the explicit limit. In [1], multiple time-scales are represented through the inclusion of a dissipative
boundary condition. Implicit solvers have been developed for second order forms of the Maxwell equations
in [3, 4, 14, 15, 19, 20, 31]. Multiple time-scales are considered in [3, 4, 15, 20] through spatial variation of the
conductivity. The scalability of a parallel solver based on [14] was demonstrated at a range of time-scales
in [20]. To the authors’ knowledge, there has been no other significant study of the parallel scalability
of implicit solvers for any formulation of the Maxwell equations at long time-scales. This work addresses
this gap directly with the development of scalable, parallel Krylov preconditioners for multiple time-scale
solutions of the full Maxwell system.

The remainder of this paper proceeds by detailing the compatible discretization employed, including
properties of the discrete operators in Section 2. An analysis of the resulting linear system and a brief review
of preconditioners developed for related systems is then presented in Section 3. A robust preconditioning
capability designed to be applied at long time-scales is proposed in Sections 4. The performance of the
preconditioner is demonstrated on a series of multiple time-scale test problems in Section 5 and finally a
brief set of conclusions are presented.

2. A Compatible Discretization of the Maxwell Equations. A weak formulation of the Maxwell
equations is obtained by multiplying equations (4c) and (5) by appropriate test functions and integrating
over the domain ⌦ in this context the weak formulation can be summarized as: Find B 2 H(div,⌦) and
E 2 H(curl,⌦) such that for all C 2 H(div,⌦) and F 2 H(curl,⌦)

�
@B
@t ,C

�
⌦
+ (r⇥E,C)⌦ = 0,(6a)

1
c2

�
@E
@t ,F

�
⌦
� (B,r⇥ F)⌦ = (n⇥B,F)@⌦ � µ (J,F)⌦ .(6b)

Given an initial condition B(t = 0) = B0 such that r ·B0 = 0, this formulation guarantees that @r·B
@t = 0

and therefore r ·B = 0 for all time [16,22]. Hence Gauss’s law (4d) is implicitly enforced by this formulation.
In the current context, Coulomb’s law (4b) can be regarded as an auxiliary equation to obtain ⇢.
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nodes edges faces volumes

nodes edges faces volumes

Q�1
E G Q�1

B K Q�1
� D

Q�1
⇢ Gt Q�1

E Kt Q�1
B Dt

Fig. 2: Relations between discrete spaces.

in volumes; such as Q1 for nodes and Q0 for volumes. Note that the operators in Figure 2 are left multiplied
by mass matrix inverses so that the discrete mapping operators take finite element coe�cient vectors to
finite element coe�cient vectors; that is, integrals over ⌦ are built into the operators G,K, and D, and mass
inversion strips away this integral back to coe�cient space. The operators can be composed, and we have
the annihilation properties

(8) (Q�1
B K)(Q�1

E G) = 0, (Q�1
⇢ D)(Q�1

B K) = 0.

The bottom row of the diagram shows the relations between the discrete adjoint operators corresponding
to the continuous adjoint operators. For instance, Q�1

E Kt can be regarded as a discrete curl mapping faces
to edges. Note that the integrated discrete adjoint operators are the transposes of the discrete forward
operators.

In addition to preserving properties of the continuous de Rham complex, the compatible discretiza-
tion scheme outlined leads to an incidence matrix type structure of the discrete di↵erential operators
Q�1

E G,Q�1
B K, and Q�1

� D for low order discretizations [29]. For example, the discrete gradient taking Q1

degrees of freedom to first order Nédélec degrees of freedom, has two entries in each row: a positive one
corresponding to the node of the associated edge and a negative one corresponding to the tail. The discrete
curl and divergence have similar structures.

Another advantage is that with E on edges and B on faces, the Dirichlet conditions for this discretization
prescribe the tangential component of E through E⇥n and the normal component of B through B ·n. These
boundary conditions have a physical intuition behind them since E⇥n andB·n are continuous across material
interfaces [18]. Furthermore, E⇥ n = 0,B · n = 0 are the perfect conductor boundary conditions.

Given the compatible discretization defined above, the weak form of the Maxwell equations (6) can be
discretized in space to yield

QB
@Bh
@t +KEh = 0,(9a)

1
c2QE

@Eh
@t �KtBh = �µJh,(9b)

where Bh and Eh are finite element coe�cient vectors. The vector Jh is a projection of the current density
onto the edge space. Observe that applying the discrete divergence operator DQ�1

B to (9a) yields @
@t (DBh) =

0. Thus, if the initial condition satisfies DBh = 0, then the discrete Gauss’s law DBh = 0 is guaranteed for
all time.

After discretizing in time, with for instance a BDF method or an implicit Runge-Kutta scheme, the fully
discrete Maxwell system can be written as

(10)

✓ 1
�tQB K
�Kt 1

c2�tQE

◆✓
B
E

◆
=

✓
f
g

◆
,

where f and g contain source information and known data, and we drop the h subscript from coe�cient
vectors for convenience. If the initial condition satisfies DB = 0, then DQ�1

B f = 0 is also guaranteed, so that
DB = 0 for all time. For instance, with a Backward Euler time discretization f = 1

�tQBB(n�1) at time-step
n, which necessarily satisfies DQ�1

B f = 0 for all n.
For low order discretizations, an equivalent fully discrete system is obtained by left multiplying the top

row by Q�1
B to obtain

(11)

✓
1
�tI K̃
�Kt 1

c2�tQE

◆✓
B
E

◆
=

✓
f̃
g

◆
,
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MrHyDE provides Mirage’s 2nd-gen extreme-scale engine9

§ A C++ framework designed and optimized for solving 
Multi-resolution Hybridized Differential Equations 
(MrHyDE).

§ Provides an interface to powerful Trilinos tools within 
a user-friendly framework.

§ Portability with performance from laptops, to MPI-
based clusters, to heterogeneous nodes, to MPI+X.

§ Ability to extract and inject data to enable data-
informed physics-based simulations.

§ A modular and flexible environment for solving 
transient nonlinear multiphysics and multiscale 
systems.

§ Extensive set of examples/regression tests to 
maintain software quality and guide new users.



MrHyDE has three operating modes10

Standard

Compatible Discretizations
Scalable Data Injection/Extraction

Coupled Multiphysics
Large-scale Optimization

Large-scale Inversion
Kokkos for advanced architectures

Funded by LDRD/ASCR

Multiscale

Multiscale in space & time
Hybridized DG methods

Dynamic adaptive subgrids

Funded by ASCR

Fully Explicit

Memory-efficient
Selective automatic 

differentiation
Matrix-free solvers

Funded by DARPA

DOE EC Project Mirage



MrHyDE stands on the shoulders of Trilinos11

DriverInterfaces to Trilinos packages 
and physics library

Mesh

Discretization

Linear algebra

User

Physics

Thermal
Porous
Shallow water
Navier Stokes
Stokes
Maxwell
…

Parameter

Assembly
(worksets)

Function Multiscale

Postprocess

SolverAnalysis

Panzer

Intrepid2

Tpetra

Belos

MueLu

Amesos2

ROL

MrHyDE
managers

Subgrid models
Kokkos

Sacado

Physics
library

Macro-scale Model

Micro-scale Model

Coarse data
from macro

model

Upscaled data
from micro

model
Macro-micro-
Macro (MmM) 

Map



Mirage has given back to Trilinos

§ UNIQUE FEATURE? Mirage’s smallest “useful” problem requires 1 billion finite elements.

§ Uncovered numerous tough bugs and missing features.
§ Provided well-documented bug reproducers and/or bug fixes.
§ Written unit tests.
§ In some cases, funded Trilinos developers to fix bugs and develop unit tests.
§ A few examples:
§ Panzer:  New parallel tiebreak for correct multiphysics DOF indexing. (with Eric Cyr)
§ Tpetra:  Hash table error in createOnetoOne map. (with Karen Devine and Mark Hoemmen)
§ Panzer:  32-bit integer limit in DOF Manager. (with Roger Pawlowski)
§ MueLu:  Various performance improvements in RefMaxwell. (with Christian Glusa)
§ Panzer:  Quadratic runtime scaling in DOF matching for periodic boundary conditions.

(with Bryan Reuter, Roger Pawlowski and Eric Cyr)
§ STK:  Quadratic memory scaling in parallel mesh database construction. (with Alan Williams)

§ Funded the development of new capabilities, such as Zellij and Trilinos Containers.

§ Motivated important new research, such as in I/O throughput and memory footprint.

12



Seacas tool Zellij

MOTIVATION For lenses, Mirage uses hexahedral meshes 
with billions of elements.  There were no existing solutions 
suitable for the required extreme-scale mesh generation.

SOLUTION Exploit the unit-cell structure of the device 
layout and stitch together the conformal mesh from a 
dictionary of individual unit-cell meshes. 
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§ Greg Sjaardema came to the rescue.  Greg developed a new Seacas
tool, called Zellij, for extreme-scale mesh stitching.

§ Zellij is a mesh concatenation application for generating a mesh 
consisting of a lattice containing one or more unit-cell template 
meshes.

§ The lattice is a two-dimensional arrangement of the unit-cell 
template meshes.

§ Note:  We also worked with Steve Owen to develop an unstructured 
mesh stitching solution as part of the Sculpt application.



Seacas tool Zellij14

BEGIN_DICTIONARY
- "../zellij-example/xatom-1b.e"
| "../zellij-example/xatom-Y.e"
+ "../zellij-example/xatom-X.e"
* "../zellij-example/xatom-2b.e"
END_DICTIONARY

BEGIN_LATTICE 5 5 1
- | + | -
| + + + |
+ + * + +
| + + + |
- | + | -
END_LATTICE

§ Given a dictionary of files and a matrix (mapping) of numbers or symbols to the files, Zellij
concatenates the files without building the entire mesh in memory.

§ The number of output files is specified by the user … it can be 1 (generates single file), 2, etc., 
up to the number of inputs in the lattice, so 25 in the example above.

§ Can be used in serial (if resources are limited) or in parallel.  In either case, there are no memory 
limitations, and Zellij will produce a mesh of virtually any size given sufficient runtime.

§ Zellij can perform a coarse-grained load balancing of the output meshes, by applying Hilbert 
Space Filling Curves (HSFC) or other algorithms to the unit-cell lattice. 

exo

exo

exo



Zellij: Coarse-grained load balancing15

§ Nearly optimal load balancing for unit-cell based meshes.
§ Mesh generation through stitching is super-fast and runtime & memory scalable.



SEMS Trilinos Container for Mirage16

§ Deploying HPC solutions on a variety of platforms is difficult:
§ Compilers, third-party libraries (TPLs), parallel execution (MPI).  

§ Containers encapsulate the full runtime environment (operating 
system) and the parallel application executable.

§ More agile, scalable and portable than virtual machines.
§ Sandia’s Software Engineering (SEMS) team has helped us 

develop container solutions for:
§ Docker – the most commonly used container tool.
§ Singularity – enables use of Docker images on HPC platforms.

§ Status:
§ Completed Docker container based on CentOS 8 and 

optimized TPLs for Mirage.
§ Tested on Mac and Windows: scalable MPI parallel execution.
§ OCI-compatible: Can be run with Podman, Singularity, etc.  
§ Singularity HPC workflow is almost ready, requires testing.

SINGULARITY

Work with Elliott Ridgway and many others from SEMS.



Looking forward: Reducing memory footprint17

Most 
Codes

A Few 
Codes

Where We 
Want To Be

§ Most applications/codes have been willing to sacrifice memory 
for performance.
§ Limits the size of the problems we can run on Sandia 

resources.
§ A few, particularly those targeting GPU platforms, will sacrifice 

performance for memory.
§ We aim to challenge the notion that we can’t have both.

R-adaptivity to enable compression of 
elementary computations in extreme-scale 
finite element simulators



Looking forward: Reducing memory footprint18

Most 
Codes

A Few 
Codes

Where We 
Want To Be

§ Most applications/codes have been willing to sacrifice memory 
for performance.
§ Limits the size of the problems we can run on Sandia 

resources.
§ A few, particularly those targeting GPU platforms, will sacrifice 

performance for memory.
§ We aim to challenge the notion that we can’t have both.
§ We can change the ratio of properties being stored to 

recomputed (blue line).

R-adaptivity to enable compression of 
elementary computations in extreme-scale 
finite element simulators



Looking forward: Reducing memory footprint19

§ Most applications/codes have been willing to sacrifice memory 
for performance.
§ Limits the size of the problems we can run on Sandia 

resources.
§ A few, particularly those targeting GPU platforms, will sacrifice 

performance for memory.
§ We aim to challenge the notion that we can’t have both.
§ We can change the ratio of properties being stored to 

recomputed (blue line).
§ Pose as a data science challenge: achieve up to 98% data-

compression of finite element computations on realistic meshes 
(red and black data in figure).

§ This allows us to run problems many times larger than 
previously possible without sacrificing runtime or accuracy.

§ Compress the number of unique finite element quantities to be 
stored for a given problem. 

Most 
Codes

A Few 
Codes

Where We 
Want To Be

R-adaptivity to enable compression of 
elementary computations in extreme-scale 
finite element simulators



Looking forward: Reducing memory footprint20

Memory usage for the components of a finite element simulation. 
• Run on a mesh of 540k elements on a single core.

Compression in the two largest contributors causes a 84% reduction in overall memory usage. 
Even more prominent for higher-order elements (92%). 



Looking forward: Reducing memory footprint21

Use ideas from moving mesh adaptivity to create meshes with 
increased redundancy of low-level finite element data! 

R-adaptive Techniques Main Idea Applications

Moving mesh partial 
differential equations 
(MMPDEs) [1,2,3]

Mesh points are determined as the solution to a 
gradient flow equation of a meshing functional.
• Control comes from the metric tensor and  

meshing functional. 
• Gives a parameterization of the mesh based on 

minimizing over specific quantities. 

• Adaptivity on surfaces and 2D 
domains.

• Mostly in response to PDE behavior 
such as shocks and singularities. 

Sandia’s Mesquite Code [4] Improves mesh quality for unstructured meshes 
using the target optimization paradigm. 
• Focused on size and shape of mesh elements.

• Fully focused mesh quantity to 
avoid issues when running PDE 
solutions. 

[1] K. L. DiPietro, R. D. Haynes, W. Huang, A. E. Lindsay, and Y. Yu, “Moving mesh simulation of contact sets in two dimensional models of elastic–electrostatic deflection 
problems,” Journal of Computational Physics, vol. 375, pp. 763–782, 2018. 
[2] W. Huang, L. Kamenski, and H. Si, “Mesh smoothing: An mmpde approach,” 2015. 
[3] A. Kolasinski and W. Huang, “A surface moving mesh method based on equidistribution and alignment,” Journal of Computational Physics, vol. 403, p. 109097, 2020.
[4] L. Freitag, T. Leurent, P. Knupp, and D. Melander, “Mesquite design: issues in the development of a mesh quality improvement toolkit.” 3 2002. 



Looking forward: Reducing memory footprint22

EXAMPLE
§ Create a database for elements in a semi-structured 

mesh. 
§ For example, the meshes for Mirage are unstructured in 

the xy-plane, but extruded in z.
§ This yields tremendous redundancy in the basis and 

mass matrix information between the elements.
§ By compressing this information, we reduce memory by 

up to 98% and reduce runtime by 10%.
§ Compression rates are even more dramatic for higher-

order discretizations.
§ However, not all meshes have this much redundancy.
§ Given a mesh with less redundancy, can we modify the 

mesh to maximize redundancy while maintaining 
accuracy?

Goal: Improve the redundancy in unstructured meshes to 
develop finite element methods with the speed and 
memory footprint of finite differences.

The colors indicate the amount of unique 
Jacobian information for an extruded mesh. 
There are approximately 3,330 unique color 
IDs for a mesh of 750k elements.


