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SPARC: Sandia Parallel Aerodynamics and Reentry Code

(T. Fischer, et al)
Goal: Create a credible full-system virtual flight-testing platform for hypersonic vehicles

Modeling
= Perfect and non-equilibrium thermal and chemical gas models
= Euler, Laminar, RANS, Hybrid RANS/LES, LES, and DNS
= Structured and Unstructured Finite Volume methods
= R&D in structured and unstructured high-order methods
= Simulate coupled ablation
= Couples to SIERRA for full-system thermal and structural analyses

Performance and Portability
= Performance Portability through Kokkos

tfemperature
= Good performance on x86, Arm, and GPU platforms 50%&‘?0 150 pﬂﬁﬂ i 3~5+02 = ‘
= Uses performance portable/scalable linear solvers from Trilinos e 7 i I
= Uses embedded geometry and inline mesh refinement : 'S I
Credibility
= Validation with UQ against wind tunnel and flight test data W\ et TR
= Visibility and peer review by external hypersonics community m’ g T : I




Background

Double-cone geometry

= SPARC validated by comparison to wind tunnel experiments at CUBRC il -
LENS-1/XX facilities for hypersonic flow over a double-cone geometry ~ 2 s2.06] o

= Uncertainties in inflow (boundary) conditions required calibrating them against
subset of data

= Problems are steady-state, but complex shock interactions requires use of time
integration methods to find solutions (pseudo-transient)

= Due to simulation expense, calibration was conducted using surrogate models
trained from samples of SPARC simulations

(a) o)

= ATDM/DPC project investigated tools for “embedded analysis”
» Embedded sensitivity analysis via Sacado
= Embedded derivative-based optimization/calibration using ROL

= FY22 ATDM Milestone:
» |[nvestigate embedded workflows for formulating and solving these calibration

p r.o b | e m S simulation boundary
= |[nvestigate the feasibility of solving these problems based on adjoint sensitivitie: separaton shock supersonic et
to provide a foundation for distinguishing future capabilities ot suface vanamited shok

» Leverage Sacado automatic differentiation (AD), Tempus time integration, and
ROL optimization components

oblique shock separation region
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Double Cone calibrations

= Several experimental data sets used for prior validation of SPARC

= Run35 (easy) - CUBRC LENS-I shock tunnel, perfect gas, vibration &
reaction equilibrium, Mach 11

= Case 1 (moderate) - CUBRC LENS-XX expansion tunnel, real gas, vibrational
non-equilibrium, reaction equilibrium, Mach 12

= Case 4 (hard)- CUBRC LENS-XX expansion tunnel, real gas, vibration &
reaction non-equilibrium, Mach 12

= Physics: laminar flow, some dissociation, separation &
reattachment, shock interactions

» Measurements: pressure and heat-flux on surface of the cone at several
locations
= Due to model form error, only use probe locations ahead of the separation region

= Prior inference with Bayesian methods and surrogate models
complete and published (DOI:10.2514/1.]J059033)

@ J. Ray et al, “Estimation of Inflow Uncertainties in Laminar Hypersonic Double-Cone Experiments”, AIAA
Journal 2020 58:10, 4461-4474


https://doi.org/10.2514/1.J059033

Embedded Optimization with ROL

ROL Rapid Optimization Library (D. Ridzal et al)
= Derivative-based optimization library in Trilinos focusing on PDE-constrained optimization

min g(u,y) =0
y
sit. f(u,y)=0

Here we use the trust region-CG optimization method using BFGS approximation to the
Hessian and reduced-space formulation:

myin h(y), h(y)=g(u(y),y) st. f(u(y),y)=0

oh Ogdu Og of ou  Of

=2 428 st — =
dy 8u8y+8ys 8u8y+8y 0

Double cone calibration objective function:

Nq

Np
glu,y) = Z [Sq(Q(Xi? u,y)— C~Ii)]2 + Z [sp(P(Xi; uy) — 5/)]24‘ [Sh(ho()/) - 770)}2 + [SP(PPitot()/) - F)Pitot)}
i=1 i=1

2

Calibration parameters: inflow boundary conditions for density, velocity
» Determined objective function is insensitive to temperature through local sensitivity analysis
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Pseudo-transient Nonlinear Solvers

= SPARC employs pseudo-transient nonlinear solvers to compute steady-state flows:
Mi+f(u,y) =0 = Aitk(/\/’ukﬂ — Muy) + f(uk+1,y) =0 (BDF1)

= Called pseudo-transient because time-step residual is not driven to zero each step
= Typically small number of Newton iterations per time step, using an approximate Jacobian:

1

f}((Uk_}_l,_)/) = A—tk(Muk—i—l — Muk) + f(Uk+1,y),

1 ry /
(A—tkM + J(U/l<+1>)’)> AUll<+1 = _fk(U//<+1aY)> Ukill = U/I<+1 + Aull<+1a
of ,

J(Ull<+1v)’) ~ a(uk—l—lay)

= Each linear system approximately solved using a light-weight linear solver (typically block tri-
diagonal solver provided by Ifpack?2)

= Manually specified sequence of increasing time-step sizes (called a run-schedule)
= Requires O(10,000-100,000) time steps
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Pseudo-transient Sensitivities

= Similar pseudo-transient approach possible for forward sensitivity equations

: of of ou 1 of of
MZz+ D wupz+L o 7= L Mz — Mz + D Zeo 4 20 _
+ au(U,Y) + dy 0, By Atk( k+1 ) + 8u(uk+1’y) k+1 + 8y(uk+1’y) 0

= Results in similar solution approach:

1 of of
Fi(Zks1, k1, ) = A—tk(MZkH — MZ) + %(Ukﬂ,y)zkﬂ + @(UHL)’),

1
(A—tkM + J(”/l<+17)’)) AZLH - _Fk(Z/£+17 U/l<+1aJ/)a Z/ii% - Z/i+1 + AZ/£+17

= Combined approach: simultaneously solve state and sensitivity equations each time-step
= Allows use of same run-schedule for state and sensitivity equations

= Sensitivity approach provided by Tempus time integration package (C. Ober et al)
= Requires users to implement needed partial derivatives

= Sensitivity residual computed using forward-mode Automatic Differentiation (AD) with Sacado package
= Use "tangent mode” to compute (Z—i) Z + Z—f] without explicitly forming %

i)



¢ | Double Cone Sensitivity Analysis

Sensitivity of objective function with respect to inflow density, velocity, and

temperature for Case 1

Shows objective function is not sensitive to temperature and can be removed from

calibration set
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Adjoint Sensitivities

. . . Oh 9gou  0Og of du  If
Recall ROL requires computing the reduced-gradient 9y ~ 9udy + == 2y st o dy + 9y

- . Oh _0g (Of\Tof Og an\"T (ofrNT[of\" T rag\T  [og\T
Adjoint sensitivity approach: — < ) —+ = = (_) _<a_y) <%> (%) +(5>

dy  du \du dy Oy dy
of T g !
Requires solving linear system of the form: <%(uoo,y)) = <%(uoo,Y))

2
|

While a pseudo-transient approach similar to forward sensitivities is possible, found it was not effective on these problems
» Full transient adjoint and pseudo-transient adjoint capabilities provided by Tempus

Found a Newton-GMRES approach to be the most effective
= Apply Newton's method to linear system and solve linear system at each step using GMRES (provided by Belos)
= Precondition GMRES using SPARC's block tri-diagonal solver applied to the native (approximate) Jacobian-transpose

= Because of iII-conditiomnF multiple Newton iterations (O(10)) are required to achieve small linear residuals with a bounded number
of linear iterations per solve (O(100)) (equivalent to iterative refinement and restarted GMRES)

» Implemented through Tempus interface to SPARC using a single time-step, not including transient terms

. _ . (af\T
Need to compute analytic adjoint matrix (ﬁ)

» Leverage existing Sacado tangent capabilities to compute %V for any matrix vV

= Use graph coloring provided by Zoltan2 to find vV with a small number of columns
» Form adjoint through explicit transpose
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Run 35 Calibration (Fine Mesh) Host o ompariaon
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Case 1 Calibration (Medium Mesh)

ROL
Converged

Density 0.4990 0.433
[g/m~3] (0.4641, 0.5339)

Velocity 3246 3540
[m/s] (3149, 3343)

Case 1 data set
 Moderate problem

« Real gas

 Vibration non-equilibrium
» Reaction equilibrium

Objective function
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Case 4 Calibration (Coarse Mesh) Heat fux comparison
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Computational Cost Comparisons

Run-time (in seconds) for forward (FSA) and adjoint (ASA) Memory high-water mark (in MB) for forward
sensitivity computations. and adjoint sensitivity computations.
State State State

Problem Mesh (SPARC) (Tempus) Adjoint ASA Total FSA Total x-Speedup Problem Mesh (SPARC) ASA FSA

Run 35  Coarse 58 79 3 82 208 2.5 Run 35 Coarse 253 323 265
Medium 110 149 3 152 474 3.1 Medium 276 395 297
Fine 622 829 13 842 2311 2.7 Fine 287 534 325

Case 1 Coarse 440 527 6 533 1890 3.5 Case 1 Coarse 257 400 275
Medium 1709 2146 12 2158 7393 34 Medium 282 555 317
Fine 12440 15219 41 15259 51628 34 Fine 302 824 371

Case 4 Coarse 558 727 7 734 2861 3.9 Case 4 Coarse 257 403 275
Medium 7139 9081 17 9099 33121 3.6 Medium 281 515 317
Fine 15024 18976 44 19020 68221 3.6 Fine 303 883 371

» Tempus-based state integration about 25% slower than SPARC-native implementation
= Due to extra residual computations for consistent computation of CFL-limited time step required by Tempus

= Cost of the adjoint solve is insignificant compared to forward state integration

= Adjoint sensitivity is about 3 times faster than forward approach on these problems
= Directly translates into comparable speedup for ROL calibration

= Adjoint approach requires substantially more memory
= Due to cost of storing true adjoint matrix and Tempus implementation requiring several copies of this matrix
= A limiting factor for small memory environments such as GPUs



ROL and Surrogate-based Inversion Comparisons

The ROL-based calibration is a deterministic inversion approach which doesn't directly
provide estimates of uncertainty

Assuming

= Qols (heat flux, pressure, total enthalpy, Pitot pressure) differ from experimental values by additive
Gaussian noise

= This noise is sufficiently small such that Qols depend approximately linearly on the calibrated
parameters

Then
» The posterior of the calibrated parameters is (approximately) Gaussian

= Solution of the ROL calibration problem is equivalent to MLE for the mean of the posterior

= The inverse of the Hessian of the objective function (negative log likelihood) at the calibrated
parameters is an estimate of the covariance of the posterior

Does this provide a useful estimate of uncertainty?

= Estimate Hessian by differencing gradient after termination of ROL calibration (3 extra
gradient computations)

i)
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Run 35 data set

- Easiest problem

« Perfect gas
 Vibration equilibrium
« Reaction equilibrium

Summary poo/pnorm Uoo/Unorm

MCMC Deterministic MCMC Deterministic
MAP 5.74 5.89 2.490 2.506
Mean 5.83 5.89 2.548 2.506
Median 5.82 5.89 2.55 2.506
IQR (5.62,6.03) (4.24,7.54) (2.5,2.6) (2.32, 2.69)

90% CI  (5.47,6.21) (1.88,9.9) (2.44,2.65) (2.06,2.95)

= Deterministic calibrated parameters
= Agree well with MCMC Map/Mean/Median
= Are within the range of experimental uncertainty

= |QR for velocity comparable, but 90% Cl is too
wide

= Both IQR and 90% CI for density are way too wide
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Case 1 data set
 Moderate problem

« Real gas

 Vibration non-equilibrium
« Reaction equilibrium

Summary Peo/ Prorm Uso /Unorm
MCMC Deterministic MCMC Deterministic
MAP 4.897 4.33 3.34 3.54
Mean 4.96 4.33 3.44 3.54
Median 4.95 4.33 3.45 3.54
(4.6,5.31) (2.86,5.79) (3.36,3.53) (3.28,3.79)
90% CI (4.33,5.64) (0.73,796) (3.21,3.65) (2.92,4.16)

= Deterministic calibrated parameters
= Agree somewhat with MCMC Map/Mean/Median
= Are outside the range of experimental uncertainty

= |QR for velocity somewhat comparable, but 90% Cl
is too wide

= Both IQR and 90% CI for density are way too wide
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Case 4 data set

Hardest problem

Real gas

Vibration non-equilibrium
Reaction non-equilibrium

= Deterministic calibrated parameters
= Agree somewhat with MCMC Map/Mean/Median

= Are outside the range of experimental uncertainty

= |QR for velocity somewhat comparable, but 90% Cl
is too wide

= Both IQR and 90% CI for density are way too wide



Conclusions

= Demonstrated adjoint sensitivities for hypersonic flows can be successful and facilitate embedded
calibration/optimization
= Capabilities are built-in to SPARC and don't require construction of surrogate models
= Provides similar calibrated parameters to surrogate/Bayesian approach (uncertainty estimates not useful though)
= Adjoint sensitivity calculation is essentially free compared to forward state solve

= Approach leverages multiple Trilinos capabilities
= Sacado AD

= ROL embedded optimization
Tempus time integration
Zoltan2 graph coloring

Ifpack2 block tri-diagonal solver
Belos GMRES

= Techniques provide a foundation for future distinguishing capabilities
»= Field inversion
= Model form error estimation
= Construction of ML-based turbulence model closures

= Shape optimization

i)
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Sacado: AD Tools for C++ Applications

Automatic differentiation package in Trilinos (Phipps and Gay)

Operator overloading-based approach
= Sacado provides C++ data types implementing AD
= Type of variables in code replaced by AD data type

= AD object for each variable stores value of that variable and its http://github.com/trilinos
derivatives

= Mathematical operations replaced by overloaded versions
implementing chain-rule

= Expression templates reduce overhead

Primary tools are Sacado’s forward mode (a.k.a. tangent mode) AD [ii

tools
= Integrates with Kokkos for efficient differentiation of thread-parallel
programs
= Compute sparse Jacobian’s for finite element-type codes by Iso-velocity adjoint surface for fluid flow in a 3D steady
differentiating at element level and manually assembling global MHD generator in Drekar computed via Sacado
Jacobia n (Courtesy of T. Wildey)

= Global Jacobian vector products



http://github.com/trilinos

Adjoint Flow Visualizations (Run35, Medium Mesh)

Primal Density Primal Energy

Adjoint Density [em Adjoint Energy
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Adjoint Flow Visualizations (Run35, Medium Mesh)

Primal x-Momentum Primal y-Momentum

Adjoint x-Momentum li-m Adjoint y-Momentum




Multi-start Optimization

Optimization paths

= Case 1 ROL-based calibration results in

calibrated parameters outside the range of
experimental uncertainty B |
= Whereas surrogate-based calibration was on the e [®
edge § | ; @ . _-':lf:_.,:§j,~‘-:-._~.-;-__-. i -
= |s this due to the problem formulation, or are s T I 0
there possibly multiple local minima? § 8§81 © @ |
. . . | @ | |
= Executed ROL inversions (on medium mesh) S ;
with 10 initial guesses to find out O
f 2
= All initial guesses converge to same minimum 8 ®
O.OOIO45 O.OOIOSO 0.00|055

= As in Case 4, the freestream conditions quoted
by experimentalists are likely wrong

Density [kg/m*3]
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Adjoint Sensitivity Accuracy Comparisons

i)
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» Explored (combined) forward and adjoint sensitivity accuracy on several test problems
= Coarse mesh blunt wedge regression test problem
» Coarse mesh Run 35 problem

» Very similar accuracy between methods across wide range of solver tolerances.
» Sensitivities also agree with finite differences to expected precision, verifying correctness



