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Modeling
§ Perfect and non-equilibrium thermal and chemical gas models
§ Euler, Laminar, RANS, Hybrid RANS/LES, LES, and DNS
§ Structured and Unstructured Finite Volume methods
§ R&D in structured and unstructured high-order methods
§ Simulate coupled ablation
§ Couples to SIERRA for full-system thermal and structural analyses

Performance and Portability
§ Performance Portability through Kokkos
§ Good performance on x86, Arm, and GPU platforms
§ Uses performance portable/scalable linear solvers from Trilinos
§ Uses embedded geometry and inline mesh refinement

Credibility
§ Validation with UQ against wind tunnel and flight test data
§ Visibility and peer review by external hypersonics community

Official Use Only / ECI 2

Goal: Create a credible full-system virtual flight-testing platform for hypersonic vehicles

RANS

WRLES

SPARC:  Sandia Parallel Aerodynamics and Reentry Code
(T. Fischer, et al)



Background

§ SPARC validated by comparison to wind tunnel experiments at CUBRC 
LENS-I/XX facilities for hypersonic flow over a double-cone geometry
§ Uncertainties in inflow (boundary) conditions required calibrating them against 

subset of data 
§ Problems are steady-state, but complex shock interactions requires use of time 

integration methods to find solutions (pseudo-transient)
§ Due to simulation expense, calibration was conducted using surrogate models 

trained from samples of SPARC simulations

§ ATDM/DPC project investigated tools for “embedded analysis”
§ Embedded sensitivity analysis via Sacado
§ Embedded derivative-based optimization/calibration using ROL

§ FY22 ATDM Milestone:
§ Investigate embedded workflows for formulating and solving these calibration 

problems
§ Investigate the feasibility of solving these problems based on adjoint sensitivities 

to provide a foundation for distinguishing future capabilities
§ Leverage Sacado automatic differentiation (AD), Tempus time integration, and 

ROL optimization components

Double-cone geometry



Double Cone calibrations

§ Several experimental data sets used for prior validation of SPARC
§ Run35 (easy) – CUBRC LENS-I shock tunnel, perfect gas, vibration & 

reaction equilibrium, Mach 11
§ Case 1 (moderate) – CUBRC LENS-XX expansion tunnel, real gas, vibrational 

non-equilibrium, reaction equilibrium, Mach 12
§ Case 4 (hard)– CUBRC LENS-XX expansion tunnel, real gas, vibration & 

reaction non-equilibrium, Mach 12

§ Physics: laminar flow, some dissociation, separation & 
reattachment, shock interactions

§ Measurements:  pressure and heat-flux on surface of the cone at several 
locations
§ Due to model form error, only use probe locations ahead of the separation region

§ Prior inference with Bayesian methods and surrogate models 
complete and published (DOI:10.2514/1.J059033)

J. Ray et al, “Estimation of Inflow Uncertainties in Laminar Hypersonic Double-Cone Experiments”, AIAA 
Journal 2020 58:10, 4461-4474

https://doi.org/10.2514/1.J059033


Embedded Optimization with ROL

§ ROL Rapid Optimization Library (D. Ridzal et al)
§ Derivative-based optimization library in Trilinos focusing on PDE-constrained optimization

§ Here we use the trust region-CG optimization method using BFGS approximation to the 
Hessian and reduced-space formulation:

§ Double cone calibration objective function:

§ Calibration parameters:  inflow boundary conditions for density, velocity
§ Determined objective function is insensitive to temperature through local sensitivity analysis
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Pseudo-transient Nonlinear Solvers

§ SPARC employs pseudo-transient nonlinear solvers to compute steady-state flows:

§ Called pseudo-transient because time-step residual is not driven to zero each step
§ Typically small number of Newton iterations per time step, using an approximate Jacobian:

§ Each linear system approximately solved using a light-weight linear solver (typically block tri-
diagonal solver provided by Ifpack2)

§ Manually specified sequence of increasing time-step sizes (called a run-schedule)
§ Requires O(10,000-100,000) time steps
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Pseudo-transient Sensitivities

§ Similar pseudo-transient approach possible for forward sensitivity equations

§ Results in similar solution approach:

§ Combined approach: simultaneously solve state and sensitivity equations each time-step
§ Allows use of same run-schedule for state and sensitivity equations

§ Sensitivity approach provided by Tempus time integration package (C. Ober et al)
§ Requires users to implement needed partial derivatives

§ Sensitivity residual computed using forward-mode Automatic Differentiation (AD) with Sacado package
§ Use ”tangent mode” to compute !"
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Double Cone Sensitivity Analysis

• Sensitivity of objective function with respect to inflow density, velocity, and 
temperature for Case 1
• Shows objective function is not sensitive to temperature and can be removed from 

calibration set

8



Adjoint Sensitivities

§ Recall ROL requires computing the reduced-gradient

§ Adjoint sensitivity approach:

§ Requires solving linear system of the form:

§ While a pseudo-transient approach similar to forward sensitivities is possible, found it was not effective on these problems
§ Full transient adjoint and pseudo-transient adjoint capabilities provided by Tempus

§ Found a Newton-GMRES approach to be the most effective
§ Apply Newton’s method to linear system and solve linear system at each step using GMRES (provided by Belos)
§ Precondition GMRES using SPARC’s block tri-diagonal solver applied to the native (approximate) Jacobian-transpose
§ Because of ill-conditioning, multiple Newton iterations (O(10)) are required to achieve small linear residuals with a bounded number 

of linear iterations per solve (O(100)) (equivalent to iterative refinement and restarted GMRES)
§ Implemented through Tempus interface to SPARC using a single time-step, not including transient terms

§ Need to compute analytic adjoint matrix !"
!#

$

§ Leverage existing Sacado tangent capabilities to compute !"
!#
𝑉 for any matrix 𝑉

§ Use graph coloring provided by Zoltan2 to find 𝑉 with a small number of columns
§ Form adjoint through explicit transpose
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Run 35 Calibration (Fine Mesh)
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Experiment ROL 
Converged

Bayesian
(90% CI)

Density 
[g/m^3]

0.5848
(0.5439, 0.6257)

0.589 0.574 
(0.5471, 0.6209)

Velocity 
[m/s]

2545
(2469, 2621)

2506 2490 
(2441, 2653)

Run 35 data set
• Easiest problem
• Perfect gas
• Vibration equilibrium
• Reaction equilibrium



Case 1 Calibration (Medium Mesh)
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Case 1 data set
• Moderate problem
• Real gas
• Vibration non-equilibrium
• Reaction equilibrium



Case 4 Calibration (Coarse Mesh)
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Case 4 data set
• Hardest problem
• Real gas
• Vibration non-equilibrium
• Reaction non-equilibrium



Computational Cost Comparisons

§ Tempus-based state integration about 25% slower than SPARC-native implementation
§ Due to extra residual computations for consistent computation of CFL-limited time step required by Tempus

§ Cost of the adjoint solve is insignificant compared to forward state integration

§ Adjoint sensitivity is about 3 times faster than forward approach on these problems
§ Directly translates into comparable speedup for ROL calibration

§ Adjoint approach requires substantially more memory
§ Due to cost of storing true adjoint matrix and Tempus implementation requiring several copies of this matrix
§ A limiting factor for small memory environments such as GPUs

OFFICIAL USE ONLY

Table 3-7. Comparing forward and adjoint sensitivity runtime performance. All times are listed in seconds.
Coarse mesh results were run on 144 cores, medium mesh on 288 cores, and fine mesh on 576 cores.

State State
Problem Mesh (SPARC) (Tempus) Adjoint ASA Total FSA Total x-Speedup

Run 35 Coarse 58 79 3 82 208 2.5
Medium 110 149 3 152 474 3.1
Fine 622 829 13 842 2311 2.7

Case 1 Coarse 440 527 6 533 1890 3.5
Medium 1709 2146 12 2158 7393 3.4
Fine 12440 15219 41 15259 51628 3.4

Case 4 Coarse 558 727 7 734 2861 3.9
Medium 7139 9081 17 9099 33121 3.6
Fine 15024 18976 44 19020 68221 3.6

mark of a single forward state integration and sensitivity computation for the forward and
adjoint-based methods across all processors. The third column shows the memory usage for a
single state integration using the SPARC-native time integrator, the fourth contains the memory
usage for the Tempus-based adjoint calculation, and the fifth contains the memory usage for a
(SPARC-native) forward sensitivity calculation. We see that while the forward sensitivity
approach uses relatively little additional memory, the adjoint-based approach uses substantially
more. This is due to the additional memory usage required by the true, second order adjoint
(computed by Sacado with graph-coloring) and the Tempus-based implementation that requires
several copies of this matrix. A more memory-optimized implementation would likely remove all
of these copies, however, because of the additional memory inherently required by the true
adjoint, the memory usage for the adjoint approach will always be substantially larger.

As a final comparison, we compare the computational cost of the ROL-based embedded
calibration using adjoint sensitivities to the surrogate-based calibration conducted in [17]. Direct
comparisons of computational cost are not feasible as the surrogate-based calibration was
conducted several years on different computational architectures. However, since the dominant
cost in the surrogate-based calibration was construction of the surrogate model through sampling,
computational cost can be estimated by counting the number of samples of the forward
simulation. The number of samples for surrogate model construction varied from problem to
problem, but was in the range of 100–150. Furthermore, for the adjoint-based calibration, the cost
of each ROL iteration is about the same as a sample since each ROL iteration requires exactly one
objective function and gradient evaluation, which together only require one forward simulation
(and as seen in Table 3-7, the cost of the adjoint calculation is not significant). Hence we see from
Fig. 3-18 that cost of the ROL/ASA-based calibration was about 15 samples, and so roughly an
order of magnitude less expensive than the surrogate-based calibration (however, the covariance
calculation adds three additional gradient evaluations, bringing the total cost up to about 18 or so
samples).

57
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Run-time (in seconds) for forward (FSA) and adjoint (ASA) 
sensitivity computations.

Memory high-water mark (in MB) for forward 
and adjoint sensitivity computations.
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Table 3-8. Comparing forward and adjoint sensitivity memory usage. All values are listed in MB, and show
the maximum memory high-water mark across all processors. Coarse mesh results were run on 144 cores,
medium mesh on 288 cores, and fine mesh on 576 cores.

State
Problem Mesh (SPARC) ASA FSA

Run 35 Coarse 253 323 265
Medium 276 395 297
Fine 287 534 325

Case 1 Coarse 257 400 275
Medium 282 555 317
Fine 302 824 371

Case 4 Coarse 257 403 275
Medium 281 515 317
Fine 303 883 371

3.7.4. Multi-start optimization

3.8. Assessment and conclusions

In this section, we provide the final assessment of the feasibility, accuracy and efficiency of
computing steady-state parametric adjoint sensitivities along with their utility in solving
calibration problems on the double-cone problem as required by the completion criteria of this
portion of the milestone.

• The combined forward sensitivity approach is robust, but expensive. All of the forward
sensitivity-based calibration results shown above used the combined sensitivity approach
described in Section 3.5.2. We found the approach worked for all three variants of the
double cone problem, on all three meshes, with little to no tweaking of the run-schedules
that were developed in prior milestones for these problems based solely on state
integrations without sensitivities. However, the approach is expensive as the cost is roughly
m+1 times the cost of a single state integration when propagating m sensitivities, which
can be quite large if the state integration is expensive, as in the case of the fine mesh Case 1
and Case 4 problems.

• The psuedo-transient approach for either forward or adjoint sensitivities is not robust.

It was assumed at the beginning of this milestone that the robustness of the combined
approach would be inherited by the pseudo-transient approach for forward or adjoint
sensitivities, but this is not the case. The reason is likely due to the fact that the CFL
condition for determining a stable step size is based on the state Jacobian, which for the
pseudo-transient approaches, is frozen at the final time step. Thus the run-schedule chosen
for the original state integration typically does not work for the forward or adjoint
sensitivity system, and we had a hard time finding run-schedules that would work for all but
the simplest Run 35 problem on a coarse mesh.
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ROL and Surrogate-based Inversion Comparisons

§ The ROL-based calibration is a deterministic inversion approach which doesn’t directly 
provide estimates of uncertainty

§ Assuming
§ QoIs (heat flux, pressure, total enthalpy, Pitot pressure) differ from experimental values by additive 

Gaussian noise
§ This noise is sufficiently small such that QoIs depend approximately linearly on the calibrated 

parameters

§ Then
§ The posterior of the calibrated parameters is (approximately) Gaussian
§ Solution of the ROL calibration problem is equivalent to MLE for the mean of the posterior 
§ The inverse of the Hessian of the objective function (negative log likelihood) at the calibrated 

parameters is an estimate of the covariance of the posterior

§ Does this provide a useful estimate of uncertainty?

§ Estimate Hessian by differencing gradient after termination of ROL calibration (3 extra 
gradient computations)



Run 35
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Table 3-3. Summarization of posterior PDFs for r•/rnorm and U•/Unorm for Run 35. The experimental value of
r•/rnorm is 5.848 (5.43, 6.26) and U•/Unorm is 2.545 (2.47, 2.62). The uncertainty in the experimental measure-
ments is 7% for inlet density and 3% for inlet velocity. rnorm = 1.0⇥10�4kg/m3 and Unorm = 1.0⇥103m/s. IQR
stands for Inter-Quartile Range and CI for Credibility Interval. MAP stands for maximum a posteriori.

Summary r•/rnorm U•/Unorm
MCMC Deterministic MCMC Deterministic

MAP 5.74 5.89 2.490 2.506
Mean 5.83 5.89 2.548 2.506
Median 5.82 5.89 2.55 2.506
IQR (5.62, 6.03) (4.24, 7.54) (2.5, 2.6) (2.32, 2.69)
90% CI (5.47, 6.21) (1.88, 9.9) (2.44, 2.65) (2.06, 2.95)

values from MCMC and the optimal value from the deterministic inversion are also plotted and
agree well.

In Table 3-3, we summarize the posterior PDFs and compare with the experimental specification.
We see that mean and median values for the normalized inlet density and velocity, as computed
using MCMC and our inversion capability, are very close to each other and certainly well within
the experimental error bounds. The inter-quartile range (IQR) for U•/Unorm as computed using
MCMC and our method are comparable, but the difference becomes very evident at the tail of the
distribution, i.e., 90% CI, where the thin-tailed Gaussian distribution incurs a large error; the true
(i.e., MCMC) posterior is far more compact. In the case of r•/rnorm, which is more difficult to
infer, the IQR and 90% CI computed using the deterministic method are too large to be useful.

We conclude that the deterministic inversion can infer inlet conditions correctly, i.e., within the
experimental error bounds, and within the IQR and 90% CI computed from MCMC’s posterior
distribution, if the model is capable of computing the flow. The IQR computed from the Gaussian
approximation of the posterior is comparable for inlet quantities that can be inferred with
confidence (U•/Unorm in our case), but the 90% CI is overly wide. For inlet quantities that are
difficult to estimate from the double-cone measurements (r•/rnorm in our case), only the mean
estimate is useful, with both the IQR and 90% CI being overly wide.

3.7.2.4. Case 1

Having tested the deterministic inversion capability on low-enthalpy Run 35, which had been
previously modeled numerically [54], we proceed to Case 1. Case 1 is of moderate enthalpy (see
Table 3-1), and we model it with a five-species mechanism and assume vibrational
non-equilibrium i.e., T• 6= Tv,•. The flow at the inlet is assumed to be in vibrational equilibrium.
The experiment was conducted in the LENS-XX expansion tunnel. An inversion for the inlet
conditions has been performed for this experimental dataset, using Bayesian inference, surrogate
models, and MCMC [67]. The study found that the inferred inlet density (MAP value) was within
the stated experimental error bounds but the inferred inlet velocity coincided with the 90% CI.
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Run 35 data set
• Easiest problem
• Perfect gas
• Vibration equilibrium
• Reaction equilibrium

§ Deterministic calibrated parameters
§ Agree well with MCMC Map/Mean/Median
§ Are within the range of experimental uncertainty

§ IQR for velocity comparable, but 90% CI is too 
wide

§ Both IQR and 90% CI for density are way too wide



Case 1
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Table 3-4. Summarization of posterior PDFs for r•/rnorm and U•/Unorm for Case 1. The experimental values of
r•/rnorm is 4.999 (4.64, 5.34) and U•/Unorm is 3.246 (3.15, 3.34). The uncertainty in the experimental measure-
ments is 7% for inlet density and 3% for inlet velocity. rnorm = 1.0⇥10�4kg/m3 and Unorm = 1.0⇥103m/s. IQR
stands for Inter-Quartile Range and CI for Credibility Interval. Note that the MAP value for inlet velocity in the
MCMC solution is different from the mean, and is actually quite close to the mean of the Gaussian approxima-
tion.

Summary r•/rnorm U•/Unorm
MCMC Deterministic MCMC Deterministic

MAP 4.897 4.33 3.34 3.54
Mean 4.96 4.33 3.44 3.54
Median 4.95 4.33 3.45 3.54
IQR (4.6, 5.31) (2.86, 5.79) (3.36, 3.53) (3.28, 3.79)
90% CI (4.33, 5.64) (0.73, 7.96) (3.21, 3.65) (2.92, 4.16)

Table 3-5. RMS error between measurements and model predictions, for the nominal and optimized freestream
conditions. Errors are computed for the probes used for calibration i.e., before flow separates as well as for all
the probes. Results are presented for both the surface pressure p(x) and heat-flux q(x).

Freestream p(x) q(x)
conditions Calib. probes All probes Calib. probes All probes

Nominal 2.61⇥101 1.8⇥103 7.6⇥104 8.7⇥104

Optimized 1.46⇥101 1.91⇥103 1.26⇥104 1.5⇥105
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§ Deterministic calibrated parameters
§ Agree somewhat with MCMC Map/Mean/Median
§ Are outside the range of experimental uncertainty

§ IQR for velocity somewhat comparable, but 90% CI 
is too wide

§ Both IQR and 90% CI for density are way too wide

Case 1 data set
• Moderate problem
• Real gas
• Vibration non-equilibrium
• Reaction equilibrium



Case 4
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Table 3-6. Summarization of posterior PDFs for r•/rnorm and U•/Unorm for Case 4. The experimental value of
r•/rnorm is 9.84 (9.15, 10.52) and U•/Unorm is 6.479 (6.23, 6.67). The uncertainty in the experimental measure-
ments is 7% for inlet density and 3% for inlet velocity. rnorm = 1.0⇥10�4kg/m3 and Unorm = 1.0⇥103m/s. IQR
stands for Inter-Quartile Range and CI for Credibility Interval. Note that the MAP value for inlet velocity in the
MCMC solution is different from the mean, and is actually quite close to the mean of the Gaussian approxima-
tion.

Summary r•/rnorm U•/Unorm
MCMC Deterministic MCMC Deterministic

MAP 8.608 8.66 7.06 6.94
Mean 9.186 8.66 6.8 6.94
Median 9.169 8.66 6.834 6.94
IQR (8.57, 9.81) (6.32, 11.0) (6.67, 6.96) (6.52, 7.36)
90% CI (8.0, 10.4) (2.98, 14.37) (6.38, 7.09) (5.92, 7.95))

experimental dataset. In this respect, this outcomes tallies with the one from the previous
work [67]. Comparing the Gaussian marginals with their MCMC counterparts, we see that the
IQR computed from the Gaussian approximation of U•/Unorm is somewhat similar to that from
MCMC, but the 90% CI is too wide. For r•/rnorm, the Gaussian is simply too wide to be useful.
Again, we see that variables that can be inferred with moderate uncertainty (U•/Unorm in our
case) will admit a useful Gaussian approximation.

3.7.2.6. Discussion

The results above show that the deterministic inversion method infers inlet conditions (the mean
of the Gaussian posterior distribution) that matches the inferences drawn with MCMC in
Ref. [67]. For Run 35 that was conducted in the LENS-I shock tunnel, and which has been
modeled successfully, the inferred inlet conditions lie within the experimental error bounds of the
inlet specification that accompanied the dataset. For the LENS-XX experiments, which have yet
to be modeled with good accuracy, the deterministic inversion method leads us to believe that the
inlet conditions may have been mis-specified in the experimental dataset. This is quite clear for
Case 4. The Bayesian analysis in Ref. [67] reaches much the same conclusion, but is dependent
on the accuracy of the surrogate models of the Navier-Stokes flow simulator. In contrast, the
deterministic method uses the Navier-Stokes simulator natively. The studies above also show that
the Gaussian approximation of the posterior distribution is not very accurate. When a quantity can
be inferred with some confidence, e.g., U•/Unorm, the approximate Gaussian posterior can
provide a useful IQR (in comparison to MCMC), but the tails of the distribution e.g., 90% CI, are
always too large to be useful. The usefulness of a Gaussian approximation to the posterior
distribution when the uncertainty in a quantity is small is well-known (see Ref. [72], Appendix A)
and its applicability can be monitored, without access to the true posterior distribution from
MCMC, using the methods in Ref. [13].

The surprise in this study was Case 1. The MCMC study in Ref. [67] came to the conclusion that
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§ Deterministic calibrated parameters
§ Agree somewhat with MCMC Map/Mean/Median
§ Are outside the range of experimental uncertainty

§ IQR for velocity somewhat comparable, but 90% CI 
is too wide

§ Both IQR and 90% CI for density are way too wide

Case 4 data set
• Hardest problem
• Real gas
• Vibration non-equilibrium
• Reaction non-equilibrium



Conclusions

§ Demonstrated adjoint sensitivities for hypersonic flows can be successful and facilitate embedded 
calibration/optimization
§ Capabilities are built-in to SPARC and don’t require construction of surrogate models
§ Provides similar calibrated parameters to surrogate/Bayesian approach (uncertainty estimates not useful though)
§ Adjoint sensitivity calculation is essentially free compared to forward state solve

§ Approach leverages multiple Trilinos capabilities
§ Sacado AD
§ ROL embedded optimization
§ Tempus time integration
§ Zoltan2 graph coloring
§ Ifpack2 block tri-diagonal solver
§ Belos GMRES

§ Techniques provide a foundation for future distinguishing capabilities
§ Field inversion
§ Model form error estimation
§ Construction of ML-based turbulence model closures
§ Shape optimization
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Sacado:   AD Tools for C++ Applications

Automatic differentiation package in Trilinos (Phipps and Gay)

Operator overloading-based approach
§ Sacado provides C++ data types implementing AD
§ Type of variables in code replaced by AD data type
§ AD object for each variable stores value of that variable and its 

derivatives
§ Mathematical operations replaced by overloaded versions 

implementing chain-rule
§ Expression templates reduce overhead

Primary tools are Sacado’s forward mode (a.k.a. tangent mode) AD 
tools
§ Integrates with Kokkos for efficient differentiation of thread-parallel 

programs
§ Compute sparse Jacobian’s for finite element-type codes by 

differentiating at element level and manually assembling global 
Jacobian

§ Global Jacobian vector products

Iso-velocity adjoint surface for fluid flow in a 3D steady 
MHD generator in Drekar computed via Sacado
(Courtesy of T. Wildey)

http://github.com/trilinos

http://github.com/trilinos


Adjoint Flow Visualizations (Run35, Medium Mesh)

Primal Density Primal Energy

Adjoint Density Adjoint Energy



Adjoint Flow Visualizations (Run35, Medium Mesh)

Primal x-Momentum Primal y-Momentum

Adjoint x-Momentum Adjoint y-Momentum



Multi-start Optimization

§ Case 1 ROL-based calibration results in 
calibrated parameters outside the range of 
experimental uncertainty
§ Whereas surrogate-based calibration was on the 

edge

§ Is this due to the problem formulation, or are 
there possibly multiple local minima?

§ Executed ROL inversions (on medium mesh) 
with 10 initial guesses to find out

§ All initial guesses converge to same minimum

§ As in Case 4, the freestream conditions quoted 
by experimentalists are likely wrong



Adjoint Sensitivity Accuracy Comparisons

Forward and adjoint sensitivity error on 
a coarse mesh blunt wedge regression 
test problem.

Difference between forward and 
adjoint sensitivities on coarse mesh 
Run 35 problem

Comparison between adjoint 
sensitivities and finite differences on a 
coarse mesh blunt wedge regression 
test problem.

§ Explored (combined) forward and adjoint sensitivity accuracy on several test problems
§ Coarse mesh blunt wedge regression test problem
§ Coarse mesh Run 35 problem

§ Very similar accuracy between methods across wide range of solver tolerances.  
§ Sensitivities also agree with finite differences to expected precision, verifying correctness


