Linear solvers Update – TUG 2022

Siva Rajamanickam (Presenter)

Trilinos User Group Meeting 2022
Overview of Preconditioning in Trilinos:

Domain Decomposition

- 2-level Domain Decomposition (ShyLU-DD / FROSCH)
- 1-Level Domain Decomposition (Ifpack2)

Multigrid

- Multigrid (MueLu)

On-node subdomain solver/ smoother options (Ifpack2 has interfaces to all)

- Jacobi, GS, ILU, Chebyshev (serial native to Ifpack2 / Kokkos Kernels)
- Interfaces to SuperLU, MUMPS, Pardiso direct linear solvers (Amesos2)
- Threaded Cholesky (Tacho), FastILU, Sparse LU (Basker) (All in ShyLU-Node)
Outline

• One Level Domain Decomposition
 • Local preconditioners and Triangular Solve for GPUs
• Batched Linear Solvers
• Multiprecision Solvers
• New Low Synch Orthogonalization
• Basker: Parallel direct solvers for Xyce
• FROSch: Domain Decomposition preconditioners on GPU
• MueLu: New developments in Multigrid methods
Incomplete LU factorization (ILU) Preconditioning Choices for Thermal Fluids Application:

<table>
<thead>
<tr>
<th>Least Robust</th>
<th>Most Robust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast ILU</td>
<td>Serial RILU(k)</td>
</tr>
<tr>
<td>Approximate iterative factorization</td>
<td>Extracts some parallelism with level scheduling</td>
</tr>
<tr>
<td>Fast TRSV</td>
<td>Serial TRSV</td>
</tr>
<tr>
<td>Polynomial approximation to triangular solve</td>
<td>Extracts some parallelism with level scheduling</td>
</tr>
</tbody>
</table>

Parallelism

- Faster on GPU
- Slower on GPU

Robustness

- Fast ILU
- RILU(k)
- Serial RILU(k)

FastILU + FastTRSV is faster on GPU only if it converges in few enough sweeps.

** KKSpTRSV and Serial TRSV are equally robust, but they may have different numerical behavior. This is also true for RILU(k) and Serial RILU(k).**

ASC Solvers on GPU Team: Loe, Berger-Vergiat, Dang, Hu, Kelley, Rajamanickam
RILU(3) + KKSpTRSV (Standard ILU Option)

Historical Speedup on 4 nodes x 4 V100 GPUs:

12.5x Speedup with Metis reordering!

<table>
<thead>
<tr>
<th></th>
<th>Trilinos 13.2+ (RCM)</th>
<th>Trilinos Dev (Metis)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute</td>
<td>10.36</td>
<td>0.98</td>
<td>10.6</td>
</tr>
<tr>
<td>Solve</td>
<td>15.71</td>
<td>1.11</td>
<td>14.2</td>
</tr>
<tr>
<td>Total</td>
<td>26.07</td>
<td>2.09</td>
<td>12.5</td>
</tr>
</tbody>
</table>

Left: RILU(3)+KKSpTRSV timings from milestone start. Right: Timings at milestone end. Both on ATS2.

ATS2 (4 V100 GPUs/node) vs CTS1 (Intel Broadwell 36 cores/node):

1.4x Speedup over fastest CTS1 run.

<table>
<thead>
<tr>
<th></th>
<th>ATS2 Best</th>
<th>CTS1 Best</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute</td>
<td>0.98</td>
<td>0.17</td>
<td>0.2</td>
</tr>
<tr>
<td>Solve</td>
<td>1.11</td>
<td>2.75</td>
<td>2.5</td>
</tr>
<tr>
<td>Total</td>
<td>2.09</td>
<td>2.92</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Left: RILU(3)+KKSpTRSV on ATS2 with Trilinos Dev and Metis reordering. Right: RILU(3)+KKSpTRSV on CTS1 with Trilinos Dev and RCM reordering.

Improvement Highlights:

- Move some operations from compute (called every solve) to initialize (called with new matrix pattern). (V. Dang)
-Removed extra device to host copies. (V. Dang, J. Hu)
-Performance improvements to Kokkos Kernels RILU(k) numeric (V. Dang)
-Performance improvements to Ifpack2 RILU(k), avoiding extra copies. (B. Kelley, V. Dang, J. Hu)
-Update Ifpack2 interface to allow Metis reordering (I. Yamazaki)
FastILU + FastSpTRSV

Note: Even though it is speedy, "Fast" ILU and TRSV perform up to 10x more FLOPS than their traditional counterparts! (Cost depends on number of sweeps.)

Historical Speedup on 4 nodes x 4 V100 GPUs:

- **Infinite speedup! 😊**
 (FastILU existed in Trilinos but did not build on GPU successfully in Trilinos 13.2.)

- **16x Speedup over previous fastest ILU!**

<table>
<thead>
<tr>
<th></th>
<th>FastILU</th>
<th>FastILU (RCM)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute</td>
<td>10.36</td>
<td>1.37</td>
<td>7.5</td>
</tr>
<tr>
<td>Solve</td>
<td>15.71</td>
<td>0.25</td>
<td>62.5</td>
</tr>
<tr>
<td>Total</td>
<td>26.07</td>
<td>1.63</td>
<td>16.0</td>
</tr>
</tbody>
</table>

Left: RILU(3)+KKSpTRSV timings from milestone start on ATS2. Right: FastILU + FastTRSV on ATS2 with Trilinos Dev and RCM reordering.

ATS2 (4 V100 GPUs/node) vs CTS1 (Intel Broadwell 36 cores/node):

- **1.8x Speedup over fastest CTS1 run!**

<table>
<thead>
<tr>
<th></th>
<th>ATS2 FastILU</th>
<th>CTS1 Best</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute</td>
<td>1.37</td>
<td>0.17</td>
<td>0.1</td>
</tr>
<tr>
<td>Solve</td>
<td>0.25</td>
<td>2.75</td>
<td>10.9</td>
</tr>
<tr>
<td>Total</td>
<td>1.63</td>
<td>2.92</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Left: FastILU + FastTRSV on ATS2 with Trilinos Dev and RCM reordering. Right: RILU(3)+KKSpTRSV on CTS1 with Trilinos Dev and RCM reordering. (Fastest of all CTS1 ILU-type options.)

Improvement Highlights:

- Fix errors to enable FastILU option for ATS-2 (I. Yamazaki)
- Several performance improvements to FastILU (I. Yamazaki, V. Dang, B. Kelley, S. Rajamanickam)
- Update Ifpack2 interface to allow Metis reordering (I. Yamazaki, E. Boman)
- Coming Soon: “FastILUT” (Based on ParILUT; Chow, Anzt, Dongarra, Rajamanickam, Patel, Boman, others)
Motivation

Numerical strategies for solving PDEs can lead to large number \((N) \) of small \((n) \) similar sparse linear systems to be solved independently \((N \gg n) \)

Two current vendor strategies:
1. Loop over \(N \) systems, solve each with vendor sparse solver (slow)
2. Convert all systems to dense and use batched dense solver if available (high-memory footprint)

New Strategy for Batched Sparse Krylov

- \(N \) systems gathered into groups of \(m \) systems \(m \ll N \)
- E.g., on new Intel CPU architectures, one can use \(m=8 \) and solvers can use vectorization to solve the group of systems at the team level.
- Hierarchical parallelism to solve \(m \) systems using an sparse iterative solver at team level

Batched Solvers xSDK
Pi:S. Rajamanickam
Team: Liegeois, Berger-Vergiat

Batched sparse solvers implemented using performance portable batched kernels at team level
Batched Sparse Solver (GMRES) Performance Results

Batched GMRES can solve larger problems than batched dense solver from NVIDIA due to reduced memory. Performance portable to other architecture (same algorithm, different hyperparameters such as m).

Batched sparse solvers efficient use of GPU resources yields two order magnitude speedup versus sequential use of sparse solvers.
GMRES-IR (Mixed Precision GMRES)

- GMRES-IR = GMRES with iterative refinement. Run GMRES + preconditioning in FP32, refine in FP64 to get double-precision accuracy.
- Convergence typically follows double precision GMRES!
- Can also run GMRES-IR with single precision preconditioning. This example: Polynomial preconditioning of degree 40 for a Laplacian.

- About 30% speedup over all-double precision.
- Trilinos options to use single precision preconditioning with double precision solver.
- Stratimikos GMRES-IR interface coming soon!
Coming soon for linear and eigen solvers:

- Stratimikos option to use Belos as a preconditioner for Belos solvers.
 - Allows polynomial preconditioning via Stratimikos.
 - Allows mixed-precision solves such as GMRES-IR (GMRES with iterative refinement).
 - Allows fun combinations like GMRES as a preconditioner for FGMRES.

- Remove Teuchos::SerialDenseMatrix from Belos.

- Belos performance testing and improvements.

- New randomized eigensolver coming to Anasazi.
Scope & Objectives

- **Low-Synch Orthogonalization**: In parallel, Krylov solvers like GMRES are limited by the communication in the orthogonalization step

- **Goal**: Develop fast (and stable) orthogonalization methods. Integrate in GMRES in Trilinos/Belos
 - Low-synch (delayed) classical Gram-Schmidt with reorth. (DCGS2)
 - Integrate into Trilinos for wide distribution to ECP users

Accomplishments

- **Algorithms**: Enhanced single-reduce orthogonalization methods in collaboration with Stephen Thomas (ExaWind, NREL) and Bielich/Langou (CU Denver). Extended to block version.

- **Parallel/GPU**: The code has been tested and optimized in multi-GPU environments (Summit), on up to 180 GPUs.

- **Speedup**: The new DCGS2 is 40-50% faster than the old CGS2.

- **Software**: Implemented new methods as option in the Trilinos package Belos. Works on both CPU and GPU. Delivered block variant for s-step GMRES in Trilinos.

- **Paper**: Bielich et al., accepted in Parallel Computing.

Potential Impact

- Low-synch orthogonalization makes GMRES faster and more scalable by reducing parallel communication/synchronization.
- May also speed up dense QR factorization.
- All ECP applications that use Trilinos solvers could benefit, particularly on GPU architectures.
Random sketching (work in progress)

Fast orthogonalization based on matrix sketching
- Work based on Balabanov & Grigori (2021)
- A random sketch projects into a smaller subspace, thus reducing both memory and computational cost
- Most useful for dense linear algebra, such as dense QR
- Pursuing a new QR algorithm based on sketch GMRES followed by CholQR

sGMRES (sketched GMRES)
- Based on method by Nakatsukasa & Tropp (2022)
- Often faster but less robust than standard GMRES
- Works best on nearly symmetric problems,
ShyLU-Basker Linear Solver

- It is primarily designed for circuit analysis (Xyce)
 - Thread-parallel version of KLU
- It uses Block Triangular Form (BTF) typical in circuit matrices
 - Reduces the computational & storage costs (only the diagonal blocks are factored)
 - Increases the thread scalability (all the diagonal blocks can be factored in parallel)
 - Assigns a thread to each “small” block
 - Uses nested-dissection to factor a larger block with multiple threads
- Several extensions were made to improve the thread-parallel stability and performance
- Iterative refinement is implemented in Amesos2 to recover from potential accuracy loss

Current work
- Transpose solve to avoid factoring both A and A^T
- Investigating further improvement in performance & stability
 - Supernodal approach (e.g., Pardiso) may be preferred if no BTF
 - Potential instability of threaded factorization
- Running full Xyce simulation with ShyLU-Basker

FROSch implements two-level Schwarz domain decomposition preconditioners of the form:

$$M_{OS2}^{-1} = \Phi A_0^{-1} \Phi^T + \sum_{i=1}^{N} R_i^T A_i^{-1} R_i$$

The coarse basis is constructed algebraically from the fully assembled and parallel distributed system matrix using operator-based extensions. FROSch preconditioners have shown to be robust and scalable for many challenging problems, including coupled velocity-temperature problems for non-uniform Greenland meshes

Highlight features

- Algebraic construction allows for using FROSch itself as an inexact coarse solver → multilevel Schwarz preconditioners
- Can be used for single-physics systems as well as multi-physics block systems → monolithic Schwarz preconditioners
- Flexibility with respect to solving the local overlapping and coarse problems: Interfaces to Amesos2 (sparse direct), Ifpack2 (incomplete LU), Belos (preconditioned Krylov), Stratimikos
- Interface from Stratimikos, and used as preconditioner for Belos
GPU Capabilities for FROSch

- Software capability has been extended for **improved GPU performance**
 - Restructuring parts of FROSch to further **separate the symbolic and numerical setups**
 - Integration of Kokkos-Kernels *supernodal* sparse-triangular solve with SuperLU/Cholmod

 ![I. Yamazaki, S. Rajmanikam, N. Elingwood, ICPP'20](image)
 - Extended Trilinos sparse direct solver interface (*Amesos2 to Tacho*) to use perform the **local solves on GPUs**
 - New options for **approximate/inexact local and coarse solvers**
 (Fast ILU/SpTRSV, FROSch as HalfPrecision operator)

Results

- Similar setup time on CPUs and GPUs, but **2x faster solve time on GPUs** for solving 3D elasticity problems on Summit
 (using 42 CPU cores vs. 6 GPUs / node)

- Next step: testing the performance with Albany and on land ice simulations for Antarctica
MueLu

- MueLu is a multigrid solving/preconditioning package.
- Part of the second-generation of Trilinos
 - Templated on scalars, ordinals, and nodes
- Multigrid is an optimal complexity $O(n)$ solver for linear systems.
 1. Start with a "fine grid"
 2. Smooth error, transfer to coarser grid
 3. Repeat 2...
 4. Perform a direct solve on the "coarse grid"
 5. Transfer to finer grid, smooth error
 6. Repeat 5...
 7. Transfer to original "fine grid", smooth error
- "Is multigrid right for me?"
 - When backslash doesn't cut it
MueLu Capabilities

- Can precondition a linear system or iteratively solve a linear system
- Supports a wide variety of grid transfers, smoothers (via Ifpack2/Amesos2), and more
- Inputs commonly supplied in XML format
 - Updated MueLu tutorial: https://muelu-tutorial.readthedocs.io (subject to change)

```xml
<ParameterList name="MueLu"/>

<Parameter name="verbosity" type="string" value="high"/>
<Parameter name="max levels" type="int" value="3"/>
<Parameter name="coarse max size" type="int" value="10"/>
<Parameter name="multigrid algorithm" type="string" value="sm4"/>

<!-- Smoothing -->
<!-- Comment/uncomment different sections to try different smoothers -->

<!-- Jacobi -->
<Parameter name="smoother: type" type="string" value="RELAXATION"/>
<ParameterList name="smoother: params"/>
<Parameter name="relaxation: type" type="string" value="Jacobi"/>
<Parameter name="relaxation: sweeps" type="int" value="1"/>
<Parameter name="relaxation: damping factor" type="double" value="0.9"/>
</ParameterList>

<!-- Aggregation -->
<Parameter name="aggregation: type" type="string" value="uncoalesced"/>
<Parameter name="aggregation: min agg size" type="int" value="3"/>
<Parameter name="aggregation: max agg size" type="int" value="10"/>
</ParameterList>
```

- Required packages: Teuchos, Xpetra, KokkosCore*, KokkosContainers*, KokkosKernels*
- Optional packages: Belos, Epetra, Teko, Amesos(2), Ifpack(2), Intrepid2, ML, Tpetra, Zoltan(2), Stratimikos, Thyra
MueLu Developments 1

- Hierarchical Matrices
 - For applications with dense matrices
- Maxwell
 - Multigrid for electromagnetics
- Multiprecision
 - Do restriction and prolongation apply at lower precision than finer levels
- Higher Order
 - P-coarsening
 - Supports schedules

Unit cube domain, uniform tetrahedral meshes
Two problem sizes: R1 @ 2.3M DOFs, R2 @ 18.7M DOFs; one time step.

<table>
<thead>
<tr>
<th>p coarsening schedule</th>
<th>nnz/row</th>
<th>Iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>R1</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>30</td>
</tr>
<tr>
<td>2 -> 1</td>
<td>43</td>
<td>24</td>
</tr>
<tr>
<td>3 -> 1</td>
<td>84</td>
<td>27</td>
</tr>
<tr>
<td>4 -> 3 -> 1</td>
<td>144</td>
<td>21</td>
</tr>
<tr>
<td>5 -> 4 -> 1</td>
<td>224</td>
<td>32</td>
</tr>
<tr>
<td>6 -> 5 -> 1</td>
<td>328</td>
<td>63</td>
</tr>
</tbody>
</table>

- HO multigrid effective in h and p
- Scheduling experiments limited by memory for p=5,6
- Next steps: Integrate into EMPIRE, optimize, matrix-free
MueLu Developments 2

- Region Multigrid
 - Grids of grids
 - Subgrids coarsened geometrically or algebraically

- Geometric Multigrid
 - Problems with structured meshes

- Support for BlockCrs matrices throughout AMG hierarchy

- Aggregation (formation of coarse level DOFs)
 - Pairwise Aggregation
 - “Cut Drop” strength-of-connection
 - For dropping weak distant connections during aggregate formation
 - Addresses matrix fill-in seen in standard Sa-AMG
Ongoing MueLu Developments & More

• Machine Learning for AMG
 • Determining tolerances via ML

• Matrix-Free
 • Matrix-free tentative prolongator operator
 • Hierarchy treats grid transfers as operators
 • Synergistic with high order work and Maxwell

• Patch-based smoothers
 • Addresses algorithmic gap between point SOR methods and incomplete factorizations

<table>
<thead>
<tr>
<th>Heuristic</th>
<th>Heuristics</th>
<th>Fixed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>-26</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>26</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>-11</td>
<td>-37</td>
</tr>
<tr>
<td>0</td>
<td>-182</td>
<td>-182</td>
</tr>
<tr>
<td>0.025</td>
<td>23</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heuristic</th>
<th>disk1</th>
<th>disk2</th>
<th>disk3</th>
<th>expl</th>
<th>tubes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37</td>
<td>21</td>
<td>21</td>
<td>30</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>21</td>
<td>21</td>
<td>30</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>37</td>
<td>26</td>
<td>21</td>
<td>30</td>
<td>14</td>
</tr>
<tr>
<td>fixed 0</td>
<td>57</td>
<td>28</td>
<td>24</td>
<td>30</td>
<td>13</td>
</tr>
<tr>
<td>fixed 0.01</td>
<td>29</td>
<td>26</td>
<td>31</td>
<td>26</td>
<td>14</td>
</tr>
<tr>
<td>fixed 0.025</td>
<td>22</td>
<td>21</td>
<td>21</td>
<td>22</td>
<td>14</td>
</tr>
</tbody>
</table>
Summary

• Several new developments in new algorithms.
• Several options available for accelerators.
• Several examples to demonstrate productionizing the algorithm capabilities that were developed.
• Exciting times ahead.