
Exceptional service in the national interest

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Linear solvers Update – TUG 2022

Siva Rajamanickam (Presenter)

Luc Berger-Vergiat, Erik Boman, Vinh Dang, Christian Glusa,
Graham Harper, Jonathan Hu, Brian Kelley, Kim Liegeois,
Jennifer Loe, Chris Siefert, Ray Tuminaro, Ichi Yamazaki

SAND2022-14878 PE

Trilinos User Group Meeting 2022

MultigridDomain Decomposition

Overview of Preconditioning in Trilinos:

2

2-level Domain
Decomposition

(ShyLU-DD / FROSCH)

1-Level Domain
Decomposition

(Ifpack2)

Multigrid
(MueLu)

On-node subdomain solver/ smoother options
(Ifpack2 has interfaces to all)

Jacobi, GS, ILU,
Chebyshev

(serial native to
Ifpack2 / Kokkos

Kernels)

Interfaces to SuperLU,
MUMPS, Pardiso direct

linear solvers (Amesos2)

Threaded Cholesky (Tacho),
FastILU, Sparse LU (Basker)

(All in ShyLU-Node)

Outline

3

• One Level Domain Decomposition
• Local preconditioners and Triangular Solve for GPUs

• Batched Linear Solvers
• Multiprecision Solvers
• New Low Synch Orthogonalization
• Basker: Parallel direct solvers for Xyce
• FROSch: Domain Decomposition preconditioners on GPU
• MueLu: New developments in Multigrid methods

Incomplete LU factorization (ILU) Preconditioning Choices for Thermal
Fluids Application:

Least Robust Most Robust

Parallelism

Factorization
(ILU)

Slower on GPUFaster on GPU

Robustness

Triangular
Solve (TRSV)

Fast ILU RILU(k) Serial RILU(k)
Approximate iterative
factorization

Extracts some parallelism
with level scheduling

Non-parallel

Fast TRSV KKSpTRSV Serial TRSV
Polynomial approximation
to triangular solve

Extracts some parallelism
with level scheduling

Non-parallel

*FastILU + FastTRSV is faster on GPU only if it converges in few enough sweeps.
** KKSpTRSV and Serial TRSV are equally robust, but they may have different numerical behavior.
This is also true for RILU(k) and Serial RILU(k).

ASC Solvers on GPU
Team: Loe, Berger-Vergiat, Dang, Hu, Kelley,
Rajamanickam

ATS2 (4 V100 GPUs/node) vs
CTS1 (Intel Broadwell 36 cores/node):
1.4x Speedup over fastest CTS1 run.

Historical Speedup on 4 nodes x 4 V100 GPUs:

12.5x Speedup with Metis reordering!

RILU(3) + KKSpTRSV (Standard ILU Option)

Improvement Highlights:
§Move some operations from compute (called every solve) to initialize (called with new matrix
pattern). (V. Dang)
§Removed extra device to host copies. (V. Dang, J. Hu)
§Performance improvements to Kokkos Kernels RILU(k) numeric (V. Dang)
§Performance improvements to Ifpack2 RILU(k), avoiding extra copies. (B. Kelley, V. Dang, J. Hu)
§Update Ifpack2 interface to allow Metis reordering (I. Yamazaki)

Trilinos 13.2+
(RCM)

Trilinos Dev
(Metis) Speedup

Compute 10.36 0.98 10.6
Solve 15.71 1.11 14.2
Total 26.07 2.09 12.5

ATS2 Best CTS1 Best Speedup
Compute 0.98 0.17 0.2
Solve 1.11 2.75 2.5
Total 2.09 2.92 1.4

Left: RILU(3)+KKSpTRSV timings from milestone start.
Right: Timings at milestone end. Both on ATS2.

Left: RILU(3)+KKSpTRSV on ATS2 with Trilinos Dev and Metis reordering.
Right: RILU(3)+KKSpTRSV on CTS1 with Trilinos Dev and RCM reordering.

FastILU + FastSpTRSV

ATS2 (4 V100 GPUs/node) vs
CTS1 (Intel Broadwell 36 cores/node):
1.8x Speedup over fastest CTS1 run!

Historical Speedup on 4 nodes x 4 V100 GPUs:
Infinite speedup! J

(FastILU existed in Trilinos but did not build on GPU
successfully in Trilinos 13.2.)

16x Speedup over previous fastest ILU!

Improvement Highlights:
§Fix errors to enable FastILU option for ATS-2 (I. Yamazaki)

§Several performance improvements to FastILU (I. Yamazaki, V. Dang, B. Kelley, S. Rajamanickam)

§Update Ifpack2 interface to allow Metis reordering (I. Yamazaki, E. Boman)

§Coming Soon: “FastILUT” (Based on ParILUT; Chow, Anzt, Dongarra, Rajamanickam, Patel, Boman, others)

ATS2 FastILU
(RCM) CTS1 Best Speedup

Compute 1.37 0.17 0.1
Solve 0.25 2.75 10.9
Total 1.63 2.92 1.8

**Note: Even though it is speedy, "Fast" ILU and TRSV perform up to 10x more
FLOPS than their traditional counterparts! (Cost depends on number of sweeps.)

Left: FastILU + FastTRSV on ATS2 with Trilinos Dev and RCM reordering.
Right: RILU(3)+KKSpTRSV on CTS1 with Trilinos Dev and RCM reordering.
(Fastest of all CTS1 ILU-type options.)

Trilinos 13.2
(RCM)

Trilinos Dev
Fast ILU Speedup

Compute 10.36 1.37 7.5
Solve 15.71 0.25 62.5
Total 26.07 1.63 16.0

Left: RILU(3)+KKSpTRSV timings from milestone start on ATS2.
Right: FastILU + FastTRSV on ATS2 with Trilinos Dev and RCM reordering.

Motivation
Numerical strategies for solving PDEs can lead to large
number (𝑁) of small (𝑛) similar sparse linear systems
to be solved independently (𝑁 >> 𝑛)

Two current vendor strategies:
1. Loop over 𝑁 systems, solve each with vendor sparse

solver (slow)
2. Convert all systems to dense and use batched dense

solver if available (high-memory footprint)

Performance Portable Batched Sparse Solvers

A (^) = H

#

=

7

Out of
memory

1

2

Batched sparse solvers implemented using performance portable batched kernels at team level

<

One group/team per color.

New Strategy for Batched Sparse Krylov
• 𝑁 systems gathered into groups of 𝑚 systems 𝑚 <<

𝑁
• E.g., on new Intel CPU architectures, one can

use 𝑚=8 and solvers can use vectorization to
solve the group of systems at the team level.

• Hierarchical parallelism to solve 𝑚 systems using
an sparse iterative solver at team level

Batched Solvers xSDK
PI:S. Rajamanickam
Team: Liegeois, Berger-Vergiat

Batched Sparse Solver (GMRES) Performance Results8

Batched sparse solvers efficient use of GPU resources yields two order
magnitude speedup versus sequential use of sparse solvers

Batched GMRES can solve larger problems than
batched dense solver from NVIDIA due to reduced
memory

Performance portable to other architecture (same algorithm,
different hyperparameters such as 𝑚)

530x

GMRES-IR (Mixed Precision GMRES)

9

• GMRES-IR = GMRES with iterative refinement. Run
GMRES + preconditioning in FP32, refine in FP64 to
get double-precision accuracy.

• Convergence typically follows double precision
GMRES!

• Can also run GMRES-IR with single precision
preconditioning. This example: Polynomial
preconditioning of degree 40 for a Laplacian.

• About 30% speedup over all-double precision.
• Trilinos options to use single precision

preconditioning with double precision solver.
• Stratimikos GMRES-IR interface coming soon!

Double
Prec

Single
Prec

IR Single
Prec

Solve Type

0

5

10

15

20

25

Ti
m

e
[s

]

Solver Timings Stretched2D1500 Poly Prec

Orthogonalization
SPMV
Other

0 100 200 300 400 500

Number of Iterations

10°11

10°10

10°9

10°8

10°7

10°6

10°5

10°4

10°3

10°2

10°1

100
R

el
at

iv
e

R
es

id
ua

lN
or

m
Preconditioned Linear Solver Convergence Stretched2D1500

Double Prec
Single Prec
GMRES IR

Multiprecision xSDK
PI: S. Rajamanickam
Team: Boman, Loe, Glusa, Yamazaki

Coming soon for linear and eigen solvers:

10

• Stratimikos option to use Belos as a preconditioner for Belos solvers.
• Allows polynomial preconditioning via Stratimikos.
• Allows mixed-precision solves such as GMRES-IR (GMRES with iterative refinement).
• Allows fun combinations like GMRES as a preconditioner for FGMRES.

• Remove Teuchos::SerialDenseMatrix from Belos.
• Belos performance testing and improvements.
• New randomized eigensolver coming to Anasazi.

Potential Impact

PEEKS: Low-Synchronous Orthogonalization

Scope & Objectives

– Low-Synch Orthogonalization: In parallel, Krylov solvers like
GMRES are limited by the communication in the
orthogonalization step

– Goal: Develop fast (and stable) orthogonalization methods. Integrate in
GMRES in Trilinos/Belos
• Low-synch (delayed) classical Gram-Schmidt with reorth. (DCGS2)
• Integrate into Trilinos for wide distribution to ECP users

Accomplishments
Algorithms: Enhanced single-reduce orthogonalization methods in
collaboration with Stephen Thomas (ExaWind,NREL) and
Bielich/Langou (CU Denver). Extended to block version.
Parallel/GPU: The code has been tested and optimized in multi-
GPU environments (Summit), on up to 180 GPUs.
Speedup: The new DCGS2 is 40-50% faster than the old CGS2.
Software: Implemented new methods as option in the Trilinos
package Belos. Works on both CPU and GPU. Delivered block
variant for s-step GMRES in Trilinos.

Paper: Bielich et al., accepted in Parallel Computing.

Sake: Scalable Kernels for Exascale
PI: Siva Rajamanickam
PEEKS team: Yamazaki, Boman, Bielich

• Low-synch orthogonalization makes GMRES faster and more
scalable by reducing parallel communication/synchronization.

• May also speed up dense QR factorization.
• All ECP applications that use Trilinos solvers could benefit,

particularly on GPU architectures.

Results on Summit (180 GPUs)

Figure
from

Bielich et
al. (2021)

Random sketching (work in progress)

Fast orthogonalization based on matrix sketching
oWork based on Balabanov & Grigori (2021)
o A random sketch projects into a smaller subspace, thus reducing both memory and computational

cost
oMost useful for dense linear algebra, such as dense QR
o Pursuing a new QR algorithm based on sketch GMRES followed by CholQR

sGMRES (sketched GMRES)
o Based on method by Nakatsukasa & Tropp (2022)
oOften faster but less robust than standard GMRES
oWorks best on nearly symmetric problems,

ShyLU-Basker Linear Solver

13

• It is primarily designed for circuit analysis (Xyce)
• Thread-parallel version of KLU

• It uses Block Triangular Form (BTF) typical in circuit matrices
• Reduces the computational & storage costs (only the diagonal blocks are factored)
• Increases the thread scalability (all the diagonal blocks can be factored in parallel)
• Assigns a thread to each “small” block
• Uses nested-dissection to factor a larger block with multiple threads

• Several extensions were made to improve the thread-parallel
stability and performance

• Iterative refinement is implemented in Amesos2
to recover from potential accuracy loss

Current work
• Transpose solve to avoid factoring both A and AT

• Investigating further improvement in performance & stability
• Supernodal approach (e.g., Pardiso) may be preferred if no BTF
• Potential instability of threaded factorization

• Running full Xyce simulation with ShyLU-Basker

Image taken from “Basker: a threaded sparse LU factorization utilizing hierarchical
parallelism on data layouts”, J. Booth, S. Rajmanickam, H. Thornquist, IPDPSW, 2016

ASC: Linear Solvers for Xyce
PI: Ichi Yamazaki
Team: Nathan Ellingwood, Heidi Thornquist

FROSch implements two-level Schwarz domain decomposition preconditioners of the form:

The coarse basis is constructed algebraically from the fully assembled and parallel
distributed system matrix using operator-based extensions. FROSch preconditioners
have shown to be robust and scalable for many challenging problems, including
coupled velocity-temperature problems for non-uniform Greenland meshes

Fast and Robust Schwarz (FROSch) Preconditioners

Image taken from “FROSch preconditioners for land ice simulation of Greenland
and Antarctica”, A. Heinlein, M. Perego, and S. Rajmanickam, SISC, 2022

Highlight features
• Algebraic construction allows for using FROSch itself as an inexact coarse solver

→ multilevel Schwarz preconditioners
• Can be used for single-physics systems as well as multi-physics block systems

→ monolithic Schwarz preconditioners
• Flexibility with respect to solving the local overlapping and coarse problems:

Interfaces to Amesos2 (sparse direct), Ifpack2 (incomplete LU), Belos (preconditioned Krylov), Stratimikos
• Interface from Stratimikos, and used as preconditioner for Belos

𝑀!"#
$% = 𝛷𝐴&$%𝛷' +&

()%

*

𝑅(' 𝐴($%𝑅(

Project: FASTMath, Sake
PI: Ichi Yamazaki , Siva Rajamanickam
Team: Heinlein

GPU Capabilities for FROSch

§ Software capability has been extended for improved GPU performance
• Restructuring parts of FROSch to further separate the symbolic and numerical setups
• Integratation of Kokkos-Kernels supernodal sparse-triangular solve with SuperLU/Cholmod

[I. Yamazaki, S. Rajmanikam, N. Elingwood, ICPP’20]

• Extended Trilinos sparse direct solver interface (Amesos2 to Tacho) to use perform the local solves on
GPUs

• New options for approximate/inexact local and coarse solvers
(Fast ILU/SpTRSV, FROSch as HalfPrecision operator)

Results
l Similar setup time on CPUs and GPUs, but 2x faster solve time on

GPUs for solving 3D elasticity problems on Summit
(using 42 CPU cores vs. 6 GPUs / node)

l Next step: testing the performance with Albany and on land ice
simulations for Antarctica

MueLu

• MueLu is a multigrid solving/preconditioning package.
• Part of the second-generation of Trilinos

• Templated on scalars, ordinals, and nodes

• Multigrid is an optimal complexity O(n) solver
for linear systems.
1. Start with a "fine grid"
2. Smooth error, transfer to coarser grid
3. Repeat 2...
4. Perform a direct solve on the "coarse grid"
5. Transfer to finer grid, smooth error
6. Repeat 5...
7. Transfer to original "fine grid", smooth error

• "Is multigrid right for me?"
•When backslash doesn't cut it

16

Project: Multiple projects
PI: Jonathan Hu
MueLu team: Berger-Vergiat, Glusa, Harper,
Seifert, Tuminaro

MueLu Capabilities

17

• Can precondition a linear system or iteratively solve a linear system
• Supports a wide variety of grid transfers,

smoothers (via Ifpack2/Amesos2), and more
• Inputs commonly supplied in XML format

• Updated MueLu tutorial:
https://muelu-tutorial.readthedocs.io
(subject to change)

• Required packages: Teuchos, Xpetra, KokkosCore*, KokkosContainers*, KokkosKernels*
• Optional packages: Belos, Epetra, Teko, Amesos(2), Ifpack(2), Intrepid2, ML, Tpetra,

Zoltan(2), Stratimikos, Thyra

MueLu Developments 1

18

• Hierarchical Matrices
• For applications with dense matrices

• Maxwell
•Multigrid for electromagnetics

• Multiprecision
•Do restriction and prolongation apply at lower

precision than finer levels

• Higher Order
• P-coarsening
• Supports schedules

MueLu Developments 2

19

• Region Multigrid
• Grids of grids
• Subgrids coarsened geometrically or algebraically

• Geometric Multigrid
• Problems with structured meshes

• Support for BlockCrs matrices throughout AMG hierarchy

• Aggregation (formation of coarse level DOFs)
• Pairwise Aggregation
• “Cut Drop” strength-of-connection
• For dropping weak distant connections during aggregate formation
• Addresses matrix fill-in seen in standard Sa-AMG

Ongoing MueLu Developments & More

20

• Machine Learning for AMG
•Determining tolerances via ML

• Matrix-Free
•Matrix-free tentative prolongator operator
•Hierarchy treats grid transfers as operators
• Synergistic with high order work and Maxwell

• Patch-based smoothers
• Addresses algorithmic gap between point SOR methods and incomplete factorizations

Summary

21

• Several new developments in new algorithms.
• Several options available for accelerators.
• Several examples to demonstrate productionizing the algorithm

capabilities that were developed.
• Exciting times ahead.

