: o : : Sandia
Exceptional service in the national interest National

Laboratories

Trilinos Users Group: Oct 25 - 27, 2022

S. DEPARTMENT OF

RGY

Nathan V. Roberts
nvrober@sandia.gov
Sandia National Laboratories
SAND 2022-14818 C

Vir

NIon.IM// r Security Administrats

oy vmed subsidiany of
ooz

Sandia

Outline e

Introduction

Structure Preservation and New Data Classes

Sum Factorization/Partial Assembly Motivation

I3 Structured Data Classes in Intrepid2

New Basis Implementations

@ A First Structure-Enhanced Algorithm: Sum Factorization

Conclusion and Future Work

Intrepid2 () =,

Intrepid2 provides tools for finite element (/volume) computations:

= high-order basis functions computed on a reference element for
the whole exact sequence: H!, H(curl), H(div), L?

= Jacobians of the reference-to-physical transformation
= pullbacks from reference to physical element

= projections into finite element function spaces

Trilinos Users Group: Oct 25 - 27, 2022 3

Sandia

Structure Preservation flre

Typical high-level FEM codes ignore or discard structure in order to
maintain generality.

Sandia
Structure Preservation () e

Typical high-level FEM codes ignore or discard structure in order to
maintain generality.

Example: using the standard Intrepid2 interface, if you want Jacobians
on an affine grid, you compute and store these at each quadrature
point, in a multi-dimensional array (a Kokkos View) with shape
(C,P,D,D). This is wasteful, and waste grows with polynomial order
and number of spatial dimensions.

By contrast, a custom implementation could store the same Jacobians
in a (C,D,D) array. For a uniform grid, this reduces to an array of
length (D).

Trilinos Users Group: Oct 25 - 27, 2022 5

Sandia
Structure Preservation () e

The new Intrepid2 Data class is a starting point for addressing this. It
stores just the unique data, but presents the same functor interface as
the standard View.

Old way: 4 doubles per Jacobian per point per cell. Same access pattern for both old and new:

Kokkos: :View 10
J(8,6) = [0]}

1 1 1

1 1 1
O oo oo o OO0 o oo oo asealusss]usnsaans]
£ Corn e e D oo ren e 0 O frn
000t B e D oo o e [Emeafunms]=smsfmans|
00 o oo e CITH oo o e O 000 oo e

New way: 2 doubles.

- - 10
Intrepid2::Data . "(2'1"’:[(: 1]

Kokkos::View

w00t

Our interest is not primarily in reducing storage costs, but in enabling
structure-aware algorithms, such as sum factorization.

Trilinos Users Group: Oct 25 - 27, 2022 6

Sandia
Motivation: Sum Factorization () e

Assembly/Evaluation Costs?

Storage | Assembly | Evaluation
Full Assembly + matvec O(p?) O(p3d) O(p?9)
Sum-Factorized Full Assembly + matvec | O(p?¢) | O(p2¢+l) O(p?4)
Partial Assembly + matrix-free action oY) O(p9) O(pdth)

For hexahedral elements in 3D:
® standard assembly: O(p®) flops
® sum factorization: O(p”) flops in general; O(p®) flops in special cases.
® partial assembly: O(p*) flops (but need matrix-free solver)

Savings increase for higher dimensions. . .
Basic idea: save flops by factoring sums.

Adds | Multiplies | Total Ops
Y YN aby | N2—1 N2 | 2N2—1
Y a Y by [2N=2 N 3N -2

1Table 1 in Anderson et al, MFEM: A modular finite element methods library. doi: 10.1016/j.camwa.2020.06.009.

Trilinos Users Group: Oct 25 - 27, 2022 7

Intrepid2’s Basis Class () =,

= Principal method: getValues () — arguments: points, operator,
Kokkos View for values

= Fills View with shape (P) or (P,D) with basis values at each ref. space
quadrature point.

Structure has been lost:
= points: flat container discards tensor structure of points.

= values: each basis value is the product of tensorial component bases; we
lose that by storing the value of the product.

Both points and values will generally require (a lot) more storage than a
structure-preserving data structure would allow.

But our major interest is in supporting algorithms that take advantage of
structure: we add a getValues () variant that accepts a BasisValues
object (see next slide).

Trilinos Users Group: Oct 25 - 27, 2022 8

Sandia

Structure-Preserving Data Classes in Intrepid2 s

® CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

Sandia

Structure-Preserving Data Classes in Intrepid2 s

® CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

® Data: basic data container, with support for expression of regular
and/or constant values without requiring redundant storage of those.

Structure-Preserving Data Classes in Intrepid2 () i,

® CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

® Data: basic data container, with support for expression of regular
and/or constant values without requiring redundant storage of those.

= TensorData: tensor product of Data containers; allows storage of
tensor-product basis evaluations such as those from H! value basis
evaluation.

Trilinos Users Group: Oct 25 - 27, 2022 11

Structure-Preserving Data Classes in Intrepid2 () i,

® CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

® Data: basic data container, with support for expression of regular
and/or constant values without requiring redundant storage of those.

= TensorData: tensor product of Data containers; allows storage of
tensor-product basis evaluations such as those from H! value basis
evaluation.

= VectorData: vectors of TensorData, possibly with multiple families
defined within one object. Allows storage of vector-valued basis
evaluations.

Trilinos Users Group: Oct 25 - 27, 2022 12

Structure-Preserving Data Classes in Intrepid2 () i,

® CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

® Data: basic data container, with support for expression of regular
and/or constant values without requiring redundant storage of those.

= TensorData: tensor product of Data containers; allows storage of
tensor-product basis evaluations such as those from H! value basis
evaluation.

= VectorData: vectors of TensorData, possibly with multiple families
defined within one object. Allows storage of vector-valued basis
evaluations.

= TensorPoints: tensor point container defined in terms of component
points.

Trilinos Users Group: Oct 25 - 27, 2022 13

Structure-Preserving Data Classes in Intrepid2 () i,

CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

Data: basic data container, with support for expression of regular
and/or constant values without requiring redundant storage of those.

TensorData: tensor product of Data containers; allows storage of
tensor-product basis evaluations such as those from H! value basis
evaluation.

VectorData: vectors of TensorData, possibly with multiple families
defined within one object. Allows storage of vector-valued basis
evaluations.

TensorPoints: tensor point container defined in terms of component
points.

BasisValues: abstraction from TensorData and VectorData;
allows arbitrary reference-space basis values to be stored.

Trilinos Users Group: Oct 25 - 27, 2022 14

Structure-Preserving Data Classes in Intrepid2 () i,

CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

Data: basic data container, with support for expression of regular
and/or constant values without requiring redundant storage of those.

TensorData: tensor product of Data containers; allows storage of
tensor-product basis evaluations such as those from H! value basis
evaluation.

VectorData: vectors of TensorData, possibly with multiple families
defined within one object. Allows storage of vector-valued basis
evaluations.

TensorPoints: tensor point container defined in terms of component
points.

BasisValues: abstraction from TensorData and VectorData;
allows arbitrary reference-space basis values to be stored.

TransformedBasisValues: BasisValues object alongside a
transformation matrix, stored in a Data object, that maps it to physical
space.

Trilinos Users Group: Oct 25 - 27, 2022 15

Sample Code]

Laboratories

See intrepid2/assembly-examples for sample
implementations of assembly on hexahedral meshes:

= Assembly of norm matrices for H*, H(curl), H(div), L2.
= Examples for both old and new data structures.

= |nvoked by StructuredIntegrationPerformance test
driver, which we used to generate timings we'll discuss later.

Sandia
New Basis Implementations () =,

DerivedBasisFamily is so named because tensor-product element
bases are derived from bases on lower-dimensional geometries.

= New nodal bases that can output to BasisValues for quads,
hexahedra, and wedges. High-order wedges are available for the
first time.

= New family of high-order, hierarchical bases taken from work by
Leszek Demkowicz's group at UT Austin; these also output to
BasisValues. Simplices, quads, hexahedra, and wedges
implemented; pyramids planned.
= Support for hyper-dimensional (up to 7D) hypercube H! and 12
bases:
® getHypercubeBasis_HGRAD (polyOrder, spaceDim)
" getHypercubeBasis_HVOL (polyOrder, spaceDim)
= Support for Serendipity Bases: sub-bases of the hierarchical bases.

= Tensor-product bases support anisotropic polynomial order.

Trilinos Users Group: Oct 25 - 27, 2022 17

Sandia

New Basis Implementations Lo

auto basis = getBasis< BasisFamily > (cellTopo, fs, polyOrder);

= New BasisFamily pattern allows basis construction from cell
topology, function space, and poly. order.
= |ncluded BasisFamily's:

= NodalBasisFamily (classic Intrepid2 bases)

= DerivedNodalBasisFamily (structure-supporting variant of
nodal bases)

" HierarchicalBasisFamily

® DGHierarchicalBasisFamily (all dofs interior; for H1, there
is a constant member)

® SerendipityBasisFamily

= DGSerendipityBasisFamily

Sandia
Sum Factorization Implementation () =,

= Sum factorization takes advantage of tensor-product structure in
finite element bases to reduce the cost of FE assembly in N
dimensions from O(p3™) to O(p2N+1).

» Theoretical speedup for hexahedra (3D): O(p?).

= We implement sum factorized integrate () with two core
kernels: one generic to the dimension, and one N =3
specialization.

= Both implementations are agnostic to architecture as well as
function space.

Trilinos Users Group: Oct 25 - 27, 2022 19

Sandia
Sum Factorization Performance Comparison () i,

Performance comparison between standard Intrepid2 and
sum-factorized assembly:

= We assemble the so-called Gram matrix for
H!, H(curl), H(div), L? function spaces, with hexahedral element
counts from 16 (for p = 10) up to 32,768 (for p = 1).

= Workset sizes are determined experimentally; we use the best
choice for each algorithm.

= We estimate flop counts for each algorithm, and use timings to
derive a throughput estimate.

Trilinos Users Group: Oct 25 - 27, 2022 20

Sandia

Intrepid2 Sum Factorization: Serial Speedups s

123456 7 8 910 123456 7 8910 1234567 8 0910 12345678910
P P P P

Figure: Serial (28-core 2.5 GHz Xeon W) speedups compared to standard
assembly for H!, H(curl), H(div), and L2 norms on hexahedra. For p =2,
speedups are 3.7, 7.2, 10, and 16, respectively. (First y tick indicates the
p = 1 speedup/slowdown.)

Intrepid2 Sum Factorization: Serial Est. Throughput@i";:ﬁ’zm

ughput (GFlops)

thro

ughput (GFlops)

thro

ughput (GFlops)
ughput (GFlops)

thro
thro

0 0

T 23456780910
v

0

Figure: Serial (28-core
and sum-factorized assembly for H!, H(curl), H(div), and L? norms on

hexahedra.

12345678910 12345678910 12345678910
P 3 P

2.5 GHz Xeon W), estimated throughput for standard

Sandia

Intrepid2 Sum Factorization: OpenMP Speedups s

S S S | L N B Y aob eV]
12345678910 T 234567380910 T 234567380910 12345678 910
P » » »

Figure: OpenMP (28-core 2.5 GHz Xeon W, 16 threads) speedups compared
to standard assembly for H, H(curl), H(div), and L? norms on hexahedra.
For p = 2, speedups are 3.3, 6.3, 6.5, and 12, respectively. (First y tick
indicates the p = 1 speedup/slowdown.)

Intrepid2 Sum Factorization: OpenMP Est. Through|m;sﬁg:"fii“.lﬂes

ughput (GFlops)

roughput (GFlops)

thro

thy

0 T3 as6 78910
P

12345678910 12345678910
» P

12345678910
»

Figure: OpenMP (28-core 2.5 GHz Xeon W, 16 threads), estimated
throughput for standard and sum-factorized assembly for H!, H(curl),
H(div), and L? norms on hexahedra.

Sandia

H H H Netional
Intrepid2 Sum Factorization: CUDA Speedups e
-
2,500 2,000 | {—o— H(div) N 5,500 |
1,800 |- —
1700 Loy 1
N | S1200f | gse00r
2 g g
71,000 @ 2,400 -
800 1,700 |-
430 4601 1,000
330 4
u2123"56739]0 0312345673910 01123456739]0 0312345673910
P P P P

Figure: CUDA (P100) speedups compared to standard assembly for H?,
H(curl), H(div), and L2 norms on hexahedra. For p = 2, speedups are 4.8,
8.6, 8.0, and 11.0, respectively. (First y tick indicates the p =1
speedup/slowdown.)

Intrepid2 Sum Factorization: CUDA Est. Throughpu{@f:"pa"’:"ﬁ'iai".lnves

150
g w g 7 T
é é Ec- 100 g
5 200 Pl 3 Fl
012365673910 u12345573910 0123456739]0 0]2345573910
» P P P

Figure: CUDA (P100), estimated throughput for standard and sum-factorized
assembly for H!, H(curl), H(div), and L? norms on hexahedra.

Sandia

Conclusion and Future Work e

Future work:
= Soon: support for orientations with structured integration.
= Soon: high-order pyramids.
= Support for matrix-free/partial assembly.
= Sum factorization for simplices?

Please do contact me (nvrober@sandia.gov) with questions
and/or feature requests.

Thanks for your attention!

	Introduction
	Structure Preservation and New Data Classes
	Sum Factorization/Partial Assembly Motivation
	Structured Data Classes in Intrepid2
	New Basis Implementations
	A First Structure-Enhanced Algorithm: Sum Factorization
	Conclusion and Future Work

