Exceptional service in the national interest

Trilinos Users Group: Oct 25 - 27, 2022

Discretizations: Intrepid2 Update

Nathan V. Roberts nvrober@sandia.gov Sandia National Laboratories SAND 2022-14818 C

Outline

- 1 Introduction
- 2 Structure Preservation and New Data Classes
- 3 Sum Factorization/Partial Assembly Motivation
- 4 Structured Data Classes in Intrepid2
- 5 New Basis Implementations
- 6 A First Structure-Enhanced Algorithm: Sum Factorization
- 7 Conclusion and Future Work

Intrepid2

Intrepid2 provides tools for finite element (/volume) computations:

- high-order basis functions computed on a reference element for the whole exact sequence: H¹, H(curl), H(div), L²
- Jacobians of the reference-to-physical transformation
- pullbacks from reference to physical element
- projections into finite element function spaces

Structure Preservation

Typical high-level FEM codes ignore or discard structure in order to maintain generality.

Structure Preservation

Typical high-level FEM codes ignore or discard structure in order to maintain generality.

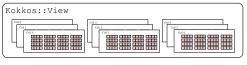
Example: using the standard Intrepid2 interface, if you want Jacobians on an affine grid, you compute and store these at each quadrature point, in a multi-dimensional array (a Kokkos View) with shape (C,P,D,D). This is wasteful, and waste grows with polynomial order and number of spatial dimensions.

By contrast, a custom implementation could store the same Jacobians in a (C,D,D) array. For a uniform grid, this reduces to an array of length (D).

Structure Preservation

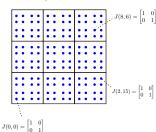
The new Intrepid2 Data class is a starting point for addressing this. It stores just the unique data, but presents the same functor interface as the standard View.

Old way: 4 doubles per Jacobian per point per cell.



New way: 2 doubles.

Same access pattern for both old and new:



Our interest is not primarily in reducing storage costs, but in enabling structure-aware algorithms, such as sum factorization.

Motivation: Sum Factorization

Assembly/Evaluation Costs1

	Storage	Assembly	Evaluation
Full Assembly $+$ matvec	$O(p^{2d})$	$O(p^{3d})$	$O(p^{2d})$
Sum-Factorized Full Assembly + matvec	$O(p^{2d})$	$O(p^{2d+1})$	$O(p^{2d})$
Partial Assembly $+$ matrix-free action	$O(p^d)$	$O(p^d)$	$O(p^{d+1})$

For hexahedral elements in 3D:

■ standard assembly: O(p⁹) flops

• sum factorization: $O(p^7)$ flops in general; $O(p^6)$ flops in special cases.

• partial assembly: $O(p^4)$ flops (but need matrix-free solver)

Savings increase for higher dimensions...

Basic idea: save flops by factoring sums.

	Adds	Multiplies	Total Ops
$\sum_{i=1}^{N} \sum_{j=1}^{N} a_i b_j$	$N^2 - 1$	N^2	$2N^2 - 1$
$\sum_{i=1}^{N} a_i \sum_{j=1}^{N} b_j$	2N – 2	N	3N - 2

¹Table 1 in Anderson et al, MFEM: A modular finite element methods library. doi: 10.1016/j.camwa.2020.06.009.

Intrepid2's Basis Class

- Principal method: getValues() arguments: points, operator,
 Kokkos View for values
- Fills View with shape (P) or (P,D) with basis values at each ref. space quadrature point.

Structure has been lost:

- points: flat container discards tensor structure of points.
- values: each basis value is the product of tensorial component bases; we lose that by storing the value of the product.

Both points and values will generally require (a lot) more storage than a structure-preserving data structure would allow.

But our major interest is in supporting algorithms that take advantage of structure: we add a <code>getValues()</code> variant that accepts a <code>BasisValues</code> object (see next slide).

 CellGeometry: general class for specifying geometry, with support for low-storage specification of regular grids, as well as arbitrary meshes.

- CellGeometry: general class for specifying geometry, with support for low-storage specification of regular grids, as well as arbitrary meshes.
- Data: basic data container, with support for expression of regular and/or constant values without requiring redundant storage of those.

- CellGeometry: general class for specifying geometry, with support for low-storage specification of regular grids, as well as arbitrary meshes.
- Data: basic data container, with support for expression of regular and/or constant values without requiring redundant storage of those.
- TensorData: tensor product of Data containers; allows storage of tensor-product basis evaluations such as those from H¹ value basis evaluation.

- CellGeometry: general class for specifying geometry, with support for low-storage specification of regular grids, as well as arbitrary meshes.
- Data: basic data container, with support for expression of regular and/or constant values without requiring redundant storage of those.
- TensorData: tensor product of Data containers; allows storage of tensor-product basis evaluations such as those from H¹ value basis evaluation.
- VectorData: vectors of TensorData, possibly with multiple families defined within one object. Allows storage of vector-valued basis evaluations.

- CellGeometry: general class for specifying geometry, with support for low-storage specification of regular grids, as well as arbitrary meshes.
- Data: basic data container, with support for expression of regular and/or constant values without requiring redundant storage of those.
- TensorData: tensor product of Data containers; allows storage of tensor-product basis evaluations such as those from H¹ value basis evaluation.
- VectorData: vectors of TensorData, possibly with multiple families defined within one object. Allows storage of vector-valued basis evaluations.
- TensorPoints: tensor point container defined in terms of component points.

- CellGeometry: general class for specifying geometry, with support for low-storage specification of regular grids, as well as arbitrary meshes.
- Data: basic data container, with support for expression of regular and/or constant values without requiring redundant storage of those.
- TensorData: tensor product of Data containers; allows storage of tensor-product basis evaluations such as those from H¹ value basis evaluation.
- VectorData: vectors of TensorData, possibly with multiple families defined within one object. Allows storage of vector-valued basis evaluations.
- TensorPoints: tensor point container defined in terms of component points.
- BasisValues: abstraction from TensorData and VectorData; allows arbitrary reference-space basis values to be stored.

- CellGeometry: general class for specifying geometry, with support for low-storage specification of regular grids, as well as arbitrary meshes.
- Data: basic data container, with support for expression of regular and/or constant values without requiring redundant storage of those.
- TensorData: tensor product of Data containers; allows storage of tensor-product basis evaluations such as those from H¹ value basis evaluation.
- VectorData: vectors of TensorData, possibly with multiple families defined within one object. Allows storage of vector-valued basis evaluations.
- TensorPoints: tensor point container defined in terms of component points.
- BasisValues: abstraction from TensorData and VectorData; allows arbitrary reference-space basis values to be stored.
- TransformedBasisValues: BasisValues object alongside a transformation matrix, stored in a Data object, that maps it to physical space.

Sample Code

See intrepid2/assembly-examples for sample implementations of assembly on hexahedral meshes:

- Assembly of norm matrices for H¹, H(curl), H(div), L².
- Examples for both old and new data structures.
- Invoked by StructuredIntegrationPerformance test driver, which we used to generate timings we'll discuss later.

New Basis Implementations

DerivedBasisFamily is so named because tensor-product element bases are *derived* from bases on lower-dimensional geometries.

- New nodal bases that can output to BasisValues for quads, hexahedra, and wedges. High-order wedges are available for the first time.
- New family of high-order, hierarchical bases taken from work by Leszek Demkowicz's group at UT Austin; these also output to BasisValues. Simplices, quads, hexahedra, and wedges implemented; pyramids planned.
- Support for hyper-dimensional (up to 7D) hypercube H¹ and L² bases:
 - getHypercubeBasis_HGRAD(polyOrder, spaceDim)
 - getHypercubeBasis_HVOL(polyOrder, spaceDim)
- Support for Serendipity Bases: sub-bases of the hierarchical bases.
- Tensor-product bases support anisotropic polynomial order.

New Basis Implementations

auto basis = getBasis< BasisFamily >(cellTopo, fs, polyOrder);

- New BasisFamily pattern allows basis construction from cell topology, function space, and poly. order.
- Included BasisFamily's:
 - NodalBasisFamily (classic Intrepid2 bases)
 - DerivedNodalBasisFamily (structure-supporting variant of nodal bases)
 - HierarchicalBasisFamily
 - DGHierarchicalBasisFamily (all dofs interior; for H¹, there is a constant member)
 - SerendipityBasisFamily
 - DGSerendipityBasisFamily

Sum Factorization Implementation

- Sum factorization takes advantage of tensor-product structure in finite element bases to reduce the cost of FE assembly in N dimensions from $O(p^{3N})$ to $O(p^{2N+1})$.
- Theoretical speedup for hexahedra (3D): O(p²).
- We implement sum factorized integrate() with two core kernels: one generic to the dimension, and one N = 3 specialization.
- Both implementations are agnostic to architecture as well as function space.

Sum Factorization Performance Comparison

Performance comparison between standard Intrepid2 and sum-factorized assembly:

- We assemble the so-called *Gram matrix* for H^1 , H(curl), H(div), L^2 function spaces, with hexahedral element counts from 16 (for p=10) up to 32,768 (for p=1).
- Workset sizes are determined experimentally; we use the best choice for each algorithm.
- We estimate flop counts for each algorithm, and use timings to derive a throughput estimate.

Intrepid2 Sum Factorization: Serial Speedups

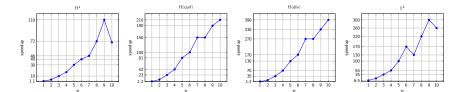


Figure: Serial (28-core 2.5 GHz Xeon W) speedups compared to standard assembly for H^1 , H(curl), H(div), and L^2 norms on hexahedra. For p=2, speedups are 3.7, 7.2, 10, and 16, respectively. (First y tick indicates the p=1 speedup/slowdown.)

Intrepid2 Sum Factorization: Serial Est. Throughput in Sandian Laboratories

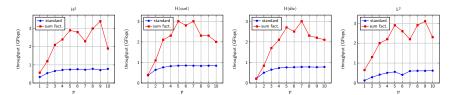


Figure: Serial (28-core 2.5 GHz Xeon W), estimated throughput for standard and sum-factorized assembly for H¹, H(curl), H(div), and L² norms on hexahedra.

Intrepid2 Sum Factorization: OpenMP Speedups

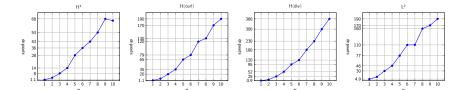


Figure: OpenMP (28-core 2.5 GHz Xeon W, 16 threads) speedups compared to standard assembly for H^1 , H(curl), H(div), and L^2 norms on hexahedra. For p=2, speedups are 3.3, 6.3, 6.5, and 12, respectively. (First y tick indicates the p=1 speedup/slowdown.)

Intrepid2 Sum Factorization: OpenMP Est. Through

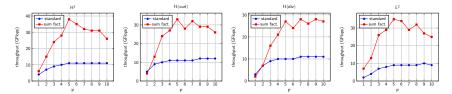


Figure: OpenMP (28-core 2.5 GHz Xeon W, 16 threads), estimated throughput for standard and sum-factorized assembly for H^1 , H(curl), H(div), and L^2 norms on hexahedra.

Intrepid2 Sum Factorization: CUDA Speedups

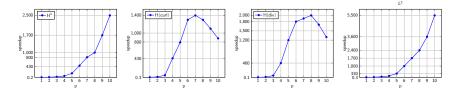


Figure: CUDA (P100) speedups compared to standard assembly for H^1 , H(curl), H(div), and L^2 norms on hexahedra. For p=2, speedups are 4.8, 8.6, 8.0, and 11.0, respectively. (First y tick indicates the p=1 speedup/slowdown.)

Intrepid2 Sum Factorization: CUDA Est. Throughput National Laboratories

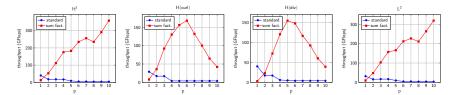


Figure: CUDA (P100), estimated throughput for standard and sum-factorized assembly for H^1 , H(curl), H(div), and L^2 norms on hexahedra.

Conclusion and Future Work

Future work:

- Soon: support for orientations with structured integration.
- Soon: high-order pyramids.
- Support for matrix-free/partial assembly.
- Sum factorization for simplices?

Please do contact me (nvrober@sandia.gov) with questions and/or feature requests.

Thanks for your attention!