—_— Sandia

) Exceptional service in the national interest National
Laboratories

Kokkos Ecosystem 4.0 Update

Unclassified Unlimited Release Nathan Ellingwood, - Center for Computing Research
Sandia National Laboratories/NM

75N, U5 OtPARTMENT OF 2 7 Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
\?/ ENERGY lg&!&% Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

= Kokkos 4.0 — what to expect)

Kokkos 4.0 will require C++17
Will support C++17, C++20, C++23
= Support for compilers lacking full C++17 will be dropped
Allows us to keep testing amount manageable
Will enable new interfaces and streamlined implementation

Use of class template argument deduction (CTAD) reduces the
need to spell template arguments out

= Fold expressions help with internal implementation, and improve compile times

= constexpr if reduces use of clunky substitution failure is not an error (SFINAE)
patterns

. New compiler minimums

GCC 8.2

Clang 8

Clang as CUDA compiler 10

Intel 19.0.5
CUDA-NVCC 11

CUDA with Clang as CUDA compiler 10.0.1

ROCM 5.2.0
IntelLLVM (CPU) 2021.1.1
IntelLLVM (SYCL) 2022.2.0
NVC++ 22.3

MSVC 19.29

IBM XL Not Supported
Classic PGl Not Supported

Laboratories

Discussion at
https://github.com
/kokkos/kokkos/is
sues/5285

https://github.com/kokkos/kokkos/issues/5285

= Kokkos 4.0 — what to expect)

= HIP backend will be promoted from Experimental

= Use Kokkos::HIP instead of Kokkos::Experimental::HIP

= Will support ROCM versions longer

= For transition time, HIP will be available in both namespaces
= TeamMDRangePolicy!

= Moving SIMD to the core repository — testing and feedback
encouraged!

" |ncremental process, all capabilities planned to be moved by
Kokkos 4.2

- Migrating to 4.0)

= Build with deprecated code disabled
-DKokkos ENABLE_DEPRECATED CODE_3=0FF

= Kokkos version 3.7 will be maintained for a patch release to ease
transition (bug fixes only, no new features)

= Deprecated code has been removed from Kokkos develop branch

= There are just a handful of exceptions we will leave in for one or two more
minor cycles to give more transition time

= Additional details in the release briefing slides:
https://github.com/kokkos/kokkos-tutorials/tree/main/Other/ReleaseBriefings

https://github.com/kokkos/kokkos-tutorials/tree/main/Other/ReleaseBriefings

= Partial list of code deprecations (3.7.00) @,

= Do not include private Kokkos headers (use #include “Kokkos_Core.hpp”)

= Reducer join member function taking volatile-qualified arguments are
deprecated (remove the volatile qualifier)

= Array reductions with pointer return types (use a Kokkos::View)
= Name your kernels by passing a string as first argument

= |nitArguments replaced by InitializationSettings

= Command line arguments and environment variables updated to increase
consistency

= ScopeGuard behavior change with respect to prior initialization
= Kokkos::sort does not accept trailing boolean argument any more

= More details: https://github.com/kokkos/kokkos-
tutorials/blob/main/Other/ReleaseBriefings/release-37.pdf

https://github.com/kokkos/kokkos-tutorials/blob/main/Other/ReleaseBriefings/release-37.pdf

= New documentation websites!)

= Kokkos Documentation now on https://kokkos.github.io

= Transition to Sphinx syntax
= More flexibility in site layout and style

= Better update processes
= Source for core documentation at https://github.com/kokkos/kokkos-core-wiki

= Using pull requests with auto deploy
= Pull requests to improve documentation are welcome!
= KokkosKernels Read The Docs!
= Additional source code documentation to the wiki
= https://kokkos-kernels.readthedocs.io/en/latest/developer/index.html

https://kokkos.github.io/
https://github.com/kokkos/kokkos-core-wiki
https://kokkos-kernels.readthedocs.io/en/latest/developer/index.html

-~ Kokkos documentation)i

Kokkos e

documentation Kokkos: The Programming Model

Q Search & C++ Performance Portability Programming Model

Kokkos Core implements a programming model in C++ for writing performance portable applications
targeting all major HPC platforms. For that purpose it provides abstractions for both parallel execution of

Programming Guide v

code and data management. Kokkos is designed to target complex node architectures with N-level memory
Requirements hierarchies and multiple types of execution resources. It currently can use CUDA, HIP, SYCL, HPX, OpenMP
Build, Install and Use and C++ threads as backend programming models with several other backends development.

CMake K d .
OGRS The Kokkos EcoSystem includes:

API: Core v

API: Containers v Name Info

o ; - this library) Programming Model - Parallel . .

API: Algorithms kokkos (X y) Prog 9 . Github link
Execution and Memory Abstraction

APl in Alphabetical Order

kokkos-kernels Sparse, dense, batched math kernels Github link
Use Cases and Examples v
)) kokkos-tools Profiling and debugging tools Github link
Testing and Issue Tracking v
. Provides Python bindings to the Kokkos X .
Tutorials & pykokkos y 9 . Github link
performance portable parallel programming.
Video lectures and slides v . .
Kok . Shared memory semantics across multiple Github link
. OKKoS—remote—spaces Ithu n
GitHub Repo @ P processes
Contributing Resilience and Checkpointing Extensions for . .
kokkos-resilience Github link
Citing Kokkos Kokkos
License

= KokkosKernels documentation) i,

A Kokkos Kernels

@ » Developer Manual » Source Code Documentation

Source Code Documentation

KokkosKernels GitHub Homepage

User Manual The source documentation is extracted from the C++ files using Doxygen.

3 Developer Docs

B Source Code Documentation e BLAS1 - KokkosKernels blas1 interfaces

BLAS1 - KokkosKernels blas1 o axpby
interfaces o dot
BLAS2 - KokkosKernels blas2 o fill
interfaces
o mult
BLAS3 - KokkosKernels blas3 o nrmil
interfaces
o nrm2
SPARSE - KokkosKernels sparse
. o nrm2w
interfaces
o nrminf
BATCHED - KokkosKernels batched .
functor-level interfaces o reciprocal
SPARSE BATCHED - KokkosKernels ° scal
sparse batched functor-level interfaces o sum
Building the Documentation © update
Code Style Guide o BLAS2 - KokkosKernels blas2 interfaces
Contributing
o gemv

= Strengthening community bonds) i

List of Applications and Libraries

= Add your app to https://github.com/kokkos/kokkos/issues/1950
= We are planning to add that to a Kokkos website

= Helps people discover each other when working on similar things

GitHub Topics
u Add kOkkOS top|c to your re po’s ”About” ||St Kokkos C++ Performance Portability

Programming EcoSystem: Math Kernels

. - Provides BLAS, Sparse BLAS and
of topics

Graph Kernels

About 3

= Click on the topic to get a list of all projects —y A —
on github with that topic

https://github.com/kokkos/kokkos/issues/1950

~ Additional Support and Resources)

= Kokkos slack channel: kokkosteam.slack.com

= Github repos
» https://github.com/kokkos/kokkos
= https://github.com/kokkos/kokkos-kernels
= https://github.com/kokkos/kokkos-tools

= Documentation:
» https://kokkos.github.io/

= The Kokkos Lectures
= https://kokkos.link/the-lectures

https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos-kernels
https://github.com/kokkos/kokkos-tools
https://kokkos.github.io/
https://kokkos.link/the-lectures

= A couple features to advertise...)

= Kokkos std::algorithms)

= Provide well known interfaces for C++ standard algorithms

= Limited to 1D Kokkos Views for now
= Can use iterator interface, or directly passing views which is safer

= >60 algorithms available

// C++17 standard
void foo(std::vector<double>& a, std::vector<double>& b) {
assert(a.size() == b.size());
std::transform(std::execution::par,
std::begin(a), std::end(a), std::begin(b),
[=] (const double& in, double& out) { /* do something */ });
}

// Kokkos using View interface (size check inside transform)
void foo(Kokkos::View<doublex> a, Kokkos::View<doublex> b) {
Kokkos::transform(Kokkos::DefaultExecutionSpace(), a, b,
[=]1(const double& in, double& out) { /* do something */ });
b

~ Multiple Instances) i

= Construct independent instances

= Allows for overlapping kernels: best for large work per iteration, low count
= Largely equivalent to CUDA streams or SYCL queues

Mini-tutorial at https://github.com/kokkos/kokkos-tutorials/blob/main/Other/ECP-
Annualmeeting/2022/KokkosTutorial ECP Instances.pdf

// Create two instances from streams

auto instances = Kokkos::Experimental::partition_space(
Kokkos: :DefaultExecutionSpace(),1,1);

// Run two kernels which can overlap
parallel_for("F1",RangePolicy<>(instances[0],N),F1);

parallel_for("F2",RangePolicy<>(instances[1],N),F2);
fence();

https://github.com/kokkos/kokkos-tutorials/blob/main/Other/ECP-Annualmeeting/2022/KokkosTutorial_ECP_Instances.pdf

= Kernels new features and improvements@ i,

Batched linear solvers
= LU with static pivoting
= PCG
= GMRES

Batched GEMM

= New heuristics and improved
interface

= Unified interface for all
parallelism levels

Mixed precision linear algebra kernels
(More in later talks)

= BsrMatrix format

Support constant block size
sparse matrix

Mat-Vec via SpMV interface
Mat-Mat via SpGEMM interface
Gauss-Seidel smoother

Sandia
National
Laboratories

