| TrilinosCouplings Development
    | 
Example: Discretize Poisson's equation with Dirichlet boundary conditions on a hexahedral mesh using nodal (Hgrad) elements. The system is assembled into Tpetra data structures, and optionally solved. More...
#include "Teuchos_oblackholestream.hpp"#include "Teuchos_GlobalMPISession.hpp"#include "Teuchos_TimeMonitor.hpp"#include "Teuchos_XMLParameterListHelpers.hpp"#include "Teuchos_StandardCatchMacros.hpp"#include "Tpetra_Core.hpp"#include "TrilinosCouplings_config.h"#include "TrilinosCouplings_TpetraIntrepidHybridPoisson3DExample.hpp"#include "TrilinosCouplings_IntrepidPoissonExampleHelpers.hpp"#include <MatrixMarket_Tpetra.hpp>
| Functions | |
| int | main (int argc, char *argv[]) | 
Example: Discretize Poisson's equation with Dirichlet boundary conditions on a hexahedral mesh using nodal (Hgrad) elements. The system is assembled into Tpetra data structures, and optionally solved.
This example uses the following Trilinos packages:
 Poisson system:
        div A grad u = f in Omega
                   u = g on Gamma
  where
         A is a material tensor (typically symmetric positive definite)
         f is a given source term
 Corresponding discrete linear system for nodal coefficients(x):
             Kx = b
        K - HGrad stiffness matrix
        b - right hand side vector