10#ifndef THYRA_VECTOR_STD_OPS_DECL_HPP
11#define THYRA_VECTOR_STD_OPS_DECL_HPP
14#include "Thyra_OperatorVectorTypes.hpp"
102template<
class Scalar>
110template<
class Scalar>
118template<
class Scalar>
127template<
class Scalar>
136template<
class Scalar>
145template<
class Scalar>
158template<
class Scalar>
167template<
class Scalar>
176template<
class Scalar>
185template<
class Scalar>
195template<
class Scalar>
204template<
class Scalar>
214template<
class Scalar>
223template<
class Scalar>
233template<
class Scalar>
243template<
class Scalar>
252template<
class Scalar>
262template<
class Scalar>
289template<
class Scalar>
307template<
class Scalar>
321template<
class Scalar>
330template<
class Scalar>
339template<
class Scalar>
348template<
class Scalar>
361template<
class Scalar>
370template<
class Scalar>
380template<
class Scalar>
389template<
class Scalar>
392 const Scalar& beta =
static_cast<Scalar
>(1.0)
400template<
class Scalar>
408template<
class Scalar>
416template<
class Scalar>
425template<
class Scalar>
434template<
class Scalar>
443template<
class Scalar>
453template<
class Scalar>
462template<
class Scalar>
485template<
class Scalar>
519template<
class Scalar>
528template<
class Scalar>
551template<
class Scalar>
584template<
class Scalar>
598template<
class Scalar>
602 return x.
space()->scalarProd(x, y);
606template<
class Scalar>
608Scalar Thyra::inner(
const VectorBase<Scalar>& x,
const VectorBase<Scalar>& y )
610 return x.space()->scalarProd(x, y);
614template<
class Scalar>
617Thyra::norm(
const VectorBase<Scalar>& v )
620 return ST::magnitude(ST::squareroot(v.space()->scalarProd(v, v)));
Abstract interface for finite-dimensional dense vectors.
Scalar dot(const VectorBase< Scalar > &x, const VectorBase< Scalar > &y)
Dot product: result = conj(x)'*y.
void maxLessThanBound(const VectorBase< Scalar > &x, const Scalar &bound, const Ptr< Scalar > &maxEle, const Ptr< Ordinal > &maxIndex)
Max element less than bound and its index: Returns maxEle = x(k) and maxIndex = k such that x(k) >= x...
void V_StVpV(const Ptr< VectorBase< Scalar > > &z, const Scalar &alpha, const VectorBase< Scalar > &x, const VectorBase< Scalar > &y)
z(i) = alpha*x(i) + y(i), i = 0...z->space()->dim()-1.
void linear_combination(const ArrayView< const Scalar > &alpha, const ArrayView< const Ptr< const VectorBase< Scalar > > > &x, const Scalar &beta, const Ptr< VectorBase< Scalar > > &y)
Linear combination: y(i) = beta*y(i) + sum( alpha[k]*x[k](i), k=0...m-1 ), i = 0.....
Scalar sum(const VectorBase< Scalar > &v)
Sum of vector elements: result = sum( v(i), i = 0...v.space()->dim()-1 ).
void Vp_StV(const Ptr< VectorBase< Scalar > > &y, const Scalar &alpha, const VectorBase< Scalar > &x)
AXPY: y(i) = alpha * x(i) + y(i), i = 0...y->space()->dim()-1.
void min(const VectorBase< Scalar > &x, const Ptr< Scalar > &maxEle, const Ptr< Ordinal > &maxIndex)
Min element and its index: Returns maxEle = x(k) and maxIndex = k such that x(k) <= x(i) for all i = ...
void seed_randomize(unsigned int s)
Seed the random number generator used in randomize().
void V_VpStV(const Ptr< VectorBase< Scalar > > &z, const VectorBase< Scalar > &x, const Scalar &alpha, const VectorBase< Scalar > &y)
z(i) = x(i) + alpha*y(i), i = 0...z->space()->dim()-1.
void Vp_S(const Ptr< VectorBase< Scalar > > &y, const Scalar &alpha)
Add a scalar to all elements: y(i) += alpha, i = 0...y->space()->dim()-1.
void V_StV(const Ptr< VectorBase< Scalar > > &y, const Scalar &alpha, const VectorBase< Scalar > &x)
Assign scaled vector: y(i) = alpha * x(i), i = 0...y->space()->dim()-1.
void reciprocal(const VectorBase< Scalar > &x, const Ptr< VectorBase< Scalar > > &y)
Element-wise reciprocal: y(i) = 1/x(i), i = 0...y->space()->dim()-1.
void Vt_S(const Ptr< VectorBase< Scalar > > &y, const Scalar &alpha)
Scale all elements by a scalar: y(i) *= alpha, i = 0...y->space()->dim()-1.
void ele_wise_conj_prod(const Scalar &alpha, const VectorBase< Scalar > &x, const VectorBase< Scalar > &v, const Ptr< VectorBase< Scalar > > &y)
Element-wise conjugate product update: y(i) += alpha * conj(x(i)) * v(i), i = 0......
Scalar inner(const VectorBase< Scalar > &x, const VectorBase< Scalar > &y)
Inner/Scalar product result = <x,y>.
void add_scalar(const Scalar &alpha, const Ptr< VectorBase< Scalar > > &y)
Add a scalar to all elements: y(i) += alpha, i = 0...y->space()->dim()-1.
Teuchos::ScalarTraits< Scalar >::magnitudeType norm(const VectorBase< Scalar > &v)
Natural norm: result = sqrt(<v,v>).
void V_S(const Ptr< VectorBase< Scalar > > &y, const Scalar &alpha)
y(i) = alpha, i = 0...y->space()->dim()-1.
void V_VpV(const Ptr< VectorBase< Scalar > > &z, const VectorBase< Scalar > &x, const VectorBase< Scalar > &y)
z(i) = x(i) + y(i), i = 0...z->space()->dim()-1.
void pair_wise_max_update(const Scalar &alpha, const VectorBase< Scalar > &x, const Ptr< VectorBase< Scalar > > &y)
Element-wise maximum update: y(i) = alpha * max(x(i), y(i)), i = 0...y->space()->dim()-1.
Scalar min(const VectorBase< Scalar > &x)
Min element: result = min{ x(i), i = 0...x.space()->dim()-1 } .
Teuchos::ScalarTraits< Scalar >::magnitudeType norm_2(const VectorBase< Scalar > &v)
Euclidean (2) norm: result = ||v||2.
void assign(const Ptr< VectorBase< Scalar > > &y, const VectorBase< Scalar > &x)
Vector assignment: y(i) = x(i), i = 0...y->space()->dim()-1.
void pair_wise_max(const Scalar &alpha, const VectorBase< Scalar > &x, const VectorBase< Scalar > &v, const Ptr< VectorBase< Scalar > > &y)
Element-wise maximum: y(i) = alpha * max(x(i), v(i)), i = 0...y->space()->dim()-1.
void scale(const Scalar &alpha, const Ptr< VectorBase< Scalar > > &y)
Scale all elements by a scalar: y(i) *= alpha, i = 0...y->space()->dim()-1.
void Vp_StVtV(const Ptr< VectorBase< Scalar > > &y, const Scalar &alpha, const VectorBase< Scalar > &x, const VectorBase< Scalar > &v)
Element-wise product update: y(i) += alpha * x(i) * v(i), i = 0...y->space()->dim()-1.
void randomize(Scalar l, Scalar u, const Ptr< VectorBase< Scalar > > &v)
Random vector generation: v(i) = rand(l,u), , i = 1...v->space()->dim().
Scalar max(const VectorBase< Scalar > &x)
Max element: result = max{ x(i), i = 1...n } .
Teuchos::ScalarTraits< Scalar >::magnitudeType norm_2(const VectorBase< Scalar > &w, const VectorBase< Scalar > &v)
Weighted Euclidean (2) norm: result = sqrt( sum( w(i)*conj(v(i))*v(i)) ).
Teuchos::ScalarTraits< Scalar >::magnitudeType norm_1(const VectorBase< Scalar > &v)
One (1) norm: result = ||v||1.
void ele_wise_divide(const Scalar &alpha, const VectorBase< Scalar > &x, const VectorBase< Scalar > &v, const Ptr< VectorBase< Scalar > > &y)
Element-wise division update: y(i) += alpha * x(i) / v(i), i = 0...y->space()->dim()-1.
void set_ele(Ordinal i, Scalar alpha, const Ptr< VectorBase< Scalar > > &v)
Set single element: v(i) = alpha.
void minGreaterThanBound(const VectorBase< Scalar > &x, const Scalar &bound, const Ptr< Scalar > &minEle, const Ptr< Ordinal > &minIndex)
Minimum element greater than some bound and its index: Returns minEle = x(k) and minIndex = k such th...
void Vt_StV(const Ptr< VectorBase< Scalar > > &y, const Scalar &alpha, const VectorBase< Scalar > &x)
Element-wise product update: y(i) *= alpha * x(i), i = 0...y->space()->dim()-1.
Scalar get_ele(const VectorBase< Scalar > &v, Ordinal i)
Get single element: result = v(i).
void Vp_V(const Ptr< VectorBase< Scalar > > &y, const VectorBase< Scalar > &x, const Scalar &beta=static_cast< Scalar >(1.0))
y(i) = x(i) + beta*y(i), i = 0...y->space()->dim()-1.
void abs(const VectorBase< Scalar > &x, const Ptr< VectorBase< Scalar > > &y)
Element-wise absolute value: y(i) = abs(x(i)), i = 0...y->space()->dim()-1.
void put_scalar(const Scalar &alpha, const Ptr< VectorBase< Scalar > > &y)
Assign all elements to a scalar: y(i) = alpha, i = 0...y->space()->dim()-1.
Scalar scalarProd(const VectorBase< Scalar > &x, const VectorBase< Scalar > &y)
Scalar product result = <x,y>.
void max(const VectorBase< Scalar > &x, const Ptr< Scalar > &maxEle, const Ptr< Ordinal > &maxIndex)
Max element and its index: Returns maxEle = x(k) and maxIndex = k such that x(k) >= x(i) for i = 0....
void V_StVpStV(const Ptr< VectorBase< Scalar > > &z, const Scalar &alpha, const VectorBase< Scalar > &x, const Scalar &beta, const VectorBase< Scalar > &y)
z(i) = alpha*x(i) + beta*y(i), i = 0...z->space()->dim()-1.
void ele_wise_prod_update(const Scalar &alpha, const VectorBase< Scalar > &x, const Ptr< VectorBase< Scalar > > &y)
Element-wise product update: y(i) *= alpha * x(i), i = 0...y->space()->dim()-1.
void V_VmV(const Ptr< VectorBase< Scalar > > &z, const VectorBase< Scalar > &x, const VectorBase< Scalar > &y)
z(i) = x(i) - y(i), i = 0...z->space()->dim()-1.
void ele_wise_prod(const Scalar &alpha, const VectorBase< Scalar > &x, const VectorBase< Scalar > &v, const Ptr< VectorBase< Scalar > > &y)
Element-wise product update: y(i) += alpha * x(i) * v(i), i = 0...y->space()->dim()-1.
virtual RCP< const VectorSpaceBase< Scalar > > space() const =0
Return a smart pointer to the vector space that this vector belongs to.
void ele_wise_scale(const VectorBase< Scalar > &x, const Ptr< VectorBase< Scalar > > &y)
Element-wise scaling: y(i) *= x(i), i = 0...y->space()->dim()-1.
void copy(const VectorBase< Scalar > &x, const Ptr< VectorBase< Scalar > > &y)
Vector assignment: y(i) = x(i), i = 0...y->space()->dim()-1.
void V_V(const Ptr< VectorBase< Scalar > > &y, const VectorBase< Scalar > &x)
y(i) = x(i), i = 0...y->space()->dim()-1.
void assign(const Ptr< VectorBase< Scalar > > &y, const Scalar &alpha)
Assign all elements to a scalar: y(i) = alpha, i = 0...y->space()->dim()-1.
Teuchos::ScalarTraits< Scalar >::magnitudeType norm_inf(const VectorBase< Scalar > &v_rhs)
Infinity norm: result = ||v||inf.
Teuchos::Ordinal Ordinal
Type for the dimension of a vector space. `*.