ROL
ROL_StdLinearOperatorFactory.hpp
Go to the documentation of this file.
1// @HEADER
2// *****************************************************************************
3// Rapid Optimization Library (ROL) Package
4//
5// Copyright 2014 NTESS and the ROL contributors.
6// SPDX-License-Identifier: BSD-3-Clause
7// *****************************************************************************
8// @HEADER
9
10#ifndef ROL_STDLINEAROPERATORFACTORY_H
11#define ROL_STDLINEAROPERATORFACTORY_H
12
14
15#include <ctime>
16#include <cstdlib>
17#include <string>
18
26namespace ROL {
27
28template<class Real>
30
31 template <typename T> using ROL::Ptr = ROL::Ptr<T>;
32
33 typedef LinearOperator<Real> OP;
34 typedef StdLinearOperator<Real> StdOP;
35
36 typedef std::vector<Real> vector;
37
38private:
39
40
41 Teuchos::BLAS<int,Real> blas_;
42 ROL::LAPACK<int,Real> lapack_;
43
44 // Fill x with uniformly-distributed random values from [lower,upper]
45 void randomize( vector &x, Real lower=0.0, Real upper=1.0 ) {
46 int N = x.size();
47 for( int i=0; i<N; ++i ) {
48 x[i] = lower+(upper-lower)*static_cast<Real>(rand())/static_cast<Real>(RAND_MAX);
49 }
50 }
51
52 void diagonal( vector &D, const vector& d ) {
53 int N = d.size();
54 int N2 = N*N;
55 D.reserve(N2);
56 D.assign(N2,0.0);
57 for( int i=0; i<N; ++i ) {
58 D[(N+1)*i] = d[i];
59 }
60 }
61
62 // C = A*B with optional transposes
63 void multiply( vector &C, const vector &A, const vector &B, bool transA=false, bool transB=false ) {
64 int N2 = A.size();
65 int N = (std::round(std::sqrt(N2)));
66 bool isSquare = N*N == N2;
67 ROL_TEST_FOR_EXCEPTION( !isSquare, std::invalid_argument,
68 "Error: vector representation A of matrix must have a square "
69 "number of elements.");
70 ROL_TEST_FOR_EXCEPTION( B.size() != N2, std::invalid_argument,
71 "Error: vectors A and B must have the same length.");
72 ROL_TEST_FOR_EXCEPTION( C.size() != N2, std::invalid_argument,
73 "Error: vectors A and C must have the same length.");
74
75 char tra = transA : 'T' : 'N';
76 char trb = transB : 'T' : 'N';
77
78 blas_.GEMM(tra,trb,N,N,N,1.0,&A[0],&B[0],N,0.0,N);
79
80 }
81
82 // Orthogonalize the columns of A
83 void orthogonalize( vector &A ) {
84 int N2 = A.size();
85 int N = (std::round(std::sqrt(N2)));
86 bool isSquare = N*N == N2;
87 ROL_TEST_FOR_EXCEPTION( !isSquare, std::invalid_argument,
88 "Error: vector representation of matrix must have a square "
89 "number of elements.");
90
91 vector TAU(N,0.0);
92
93 int LDA = N;
94 Real LWORK1, LWORK2;
95 int INFO = 0;
96
97 // Query workspace
98 lapack_.GEQRF(N,N,&A[0],LDA,&TAU[0],&LWORK1,-1,&INFO);
99 ROL_TEST_FOR_EXCEPTION(INFO,std::logic_error,"LAPACK GEQRF LWORK query failed.");
100
101 lapack_.ORGQR(N,N,N,&A[0],LDA,&TAU[0],&LWORK2,-1,&INFO);
102 ROL_TEST_FOR_EXCEPTION(INFO,std::logic_error,"LAPACK ORGQR LWORK query failed.");
103
104 const int LWORK = std::max(std::abs(LWORK1),std::abs(LWORK2));
105
106 vector WORK(LWORK);
107
108 // Factor the input matrix
109 lapack_.GEQRF(N,N,&A[0],LDA,&TAU[0],LWORK,&INFO);
110 ROL_TEST_FOR_EXCEPTION(INFO,std::logic_error,"LAPACK GEQRF failed with INFO = " << INFO );
111
112 // Overwrite the input matrix with the orthogonal matrix Q
113 lapack_.ORGQR(N,N,N,&A[0],LDA,&TAU[0],&WORK[0],LWORK,&INFO);
114 ROL_TEST_FOR_EXCEPTION(INFO,std::logic_error,"LAPACK ORGQR failed with INFO = " << INFO );
115
116 }
117
118
119public:
120
121 enum class EMatrixType unsigned {
122 MATRIX_SPD = 0, // Symmetric Positive Definite matrix
123 MATRIX_SYMMETRIC, // Symmetric Indefinite matrix
124 MATRIX_UNITARY, // Unitary matrix
125 MATRIX_SINGULAR_S, // Singular symmetric matrix
126 MATRIX_SINGULAR_N, // Singular nonsymmetric matrix
127 MATRIX_DEFAULT, // Random nonsymmetric matrix
128 MATRIX_LAST
129 };
130
131 ~StdLinearOperatorFactor(void) {}
132
133 EMatrixType StringToEMatrixType( satd::string s ) {
134 s = removeStringFormat(s);
135 for ( EMatrixType mt = MATRIX_SPD; mt < MATRIX_LAST; ++ ) {
136 if ( !s.compare(removeStringFormat(EStepToString(mt))) ) {
137 return mt;
138 }
139 }
140
141 std::string EMatrixTypeToString( EMatrixType mt ) {
142 std::string retString;
143 switch( mt ) {
144 case MATRIX_SPD: retString = "Symmetric Positive Definite"; break;
145 case MATRIX_SYMMETRIC: retString = "Symmetric Indefinite"; break;
146 case MATRIX_UNITARY: retString = "Unitary"; break;
147 case MATRIX_SINGULAR_S: retString = "Singular Symmetric"; break;
148 case MATRIX_SINGILAR_N: retString = "Singular Nonsymmetric"; break;
149 case MATRIX_DEFAULT: retString = "Default"; break;
150 case MATRIX_LAST: retString = "Last (dummy)"; break;
151 }
152 return retString;
153 }
154
155 ROL::Ptr<LinearOperator<Real> > getOperator( int size, const std::string &type="" ) const {
156 EMatrixType emt = StringToEMatrixType(type);
157
158
159
160 int n2 = size*size;
161
162 ROL::Ptr<vector> Ap = ROL::makePtr<vector>(n2);
163
164 switch( emt ) {
165 case MATRIX_SPD: {
166
167 vector d(size);
168 randomize(d,1.0,2.0);
169
170 // A = D
171 diagonal(*Ap,d);
172
173 vector Q(n2);
174 randomize(Q,-1.0,1.0);
175 orthogonalize(Q);
176
177 // A = D*Q
178 multiply(*Ap,*Ap,Q);
179
180 // A = Q'*D*Q
181 multiply(*Ap,Q,*Ap,true);
182
183 }
184 break;
185
186 case MATRIX_SYMMETRIC: {
187 vector d(size);
188 randomize(d);
189
190 // A = D
191 diagonal(*Ap,d);
192
193 vector Q(n2);
194 randomize(Q,-1.0,1.0);
195 orthogonalize(Q);
196
197 // A = D*Q
198 multiply(*Ap,*Ap,Q);
199
200 // A = Q'*D*Q
201 multiply(*Ap,Q,*Ap,true);
202 }
203 break;
204
205 case MATRIX_UNITARY: {
206 randomize(*Ap);
207 orthogonalize(*Ap);
208 }
209
210 case MATRIX_SINGULAR_S: {
211 vector d(size);
212 randomize(d);
213
214 d[0] = 0;
215
216 // A = D
217 diagonal(*Ap,d);
218
219 vector Q(n2);
220 randomize(Q,-1.0,1.0);
221 orthogonalize(Q);
222
223 // A = D*Q
224 multiply(*Ap,*Ap,Q);
225
226 // A = Q'*D*Q
227 multiply(*Ap,Q,*Ap,true);
228
229
230 case MATRIX_SINGULAR_N: {
231
232 vector d(size);
233 randomize(d,0.0,1.0);
234
235 d[0] = 0;
236
237 // A = D
238 diagonal(*Ap,d);
239
240 vector V(n2);
241 randomize(V,-1.0,1.0);
242 orthogonalize(V);
243
244 // A = D*V'
245 multiply(*Ap,*Ap,Q,false,true);
246
247 vector U(n2);
248 randomize(U,-1.0,1.0);
249 orthogonalize(U);
250
251 // A = U*D*V'
252 multiply(*Ap,U,*Ap);
253
254 }
255
256 case MATRIX_DEFAULT:
257 default: {
258 randomize(*Ap);
259 }
260
261 }
262 return ROL::makePtr<StdOP>(Ap);
263 }
264
265
266
267}; // class StdLinearOperatorFactory
268
269} // namespace ROL
270
271
272#endif // ROL_STDLINEAROPERATORFACTORY_H
Vector< Real > V
LinearOperator< Real > OP
Creates StdLinearOperator objects which wrap random.
std::string EStepToString(EStep tr)
std::string removeStringFormat(std::string s)
ROL::Ptr< LinearOperator< Real > > getOperator(int row, int col) const