10#ifndef IFPACK2_DETAILS_CHEBYSHEVKERNEL_DEF_HPP
11#define IFPACK2_DETAILS_CHEBYSHEVKERNEL_DEF_HPP
13#include "Tpetra_CrsMatrix.hpp"
14#include "Tpetra_MultiVector.hpp"
15#include "Tpetra_Operator.hpp"
16#include "Tpetra_Vector.hpp"
17#include "Tpetra_Export_decl.hpp"
18#include "Tpetra_Import_decl.hpp"
19#if KOKKOS_VERSION >= 40799
20#include "KokkosKernels_ArithTraits.hpp"
22#include "Kokkos_ArithTraits.hpp"
24#include "Teuchos_Assert.hpp"
26#include "KokkosSparse_spmv_impl.hpp"
36template <
class WVector,
46 static_assert(
static_cast<int>(WVector::rank) == 1,
47 "WVector must be a rank 1 View.");
48 static_assert(
static_cast<int>(DVector::rank) == 1,
49 "DVector must be a rank 1 View.");
50 static_assert(
static_cast<int>(BVector::rank) == 1,
51 "BVector must be a rank 1 View.");
52 static_assert(
static_cast<int>(XVector_colMap::rank) == 1,
53 "XVector_colMap must be a rank 1 View.");
54 static_assert(
static_cast<int>(XVector_domMap::rank) == 1,
55 "XVector_domMap must be a rank 1 View.");
57 using execution_space =
typename AMatrix::execution_space;
58 using LO =
typename AMatrix::non_const_ordinal_type;
59 using value_type =
typename AMatrix::non_const_value_type;
60 using team_policy =
typename Kokkos::TeamPolicy<execution_space>;
61 using team_member =
typename team_policy::member_type;
62#if KOKKOS_VERSION >= 40799
63 using ATV = KokkosKernels::ArithTraits<value_type>;
65 using ATV = Kokkos::ArithTraits<value_type>;
77 const LO rows_per_team;
97 const size_t numRows = m_A.numRows();
98 const size_t numCols = m_A.numCols();
108 void operator()(
const team_member&
dev)
const {
110#if KOKKOS_VERSION >= 40799
111 using KAT = KokkosKernels::ArithTraits<residual_value_type>;
113 using KAT = Kokkos::ArithTraits<residual_value_type>;
116 Kokkos::parallel_for(Kokkos::TeamThreadRange(
dev, 0, rows_per_team),
117 [&](
const LO&
loop) {
119 static_cast<LO
>(
dev.league_rank()) * rows_per_team +
loop;
120 if (
lclRow >= m_A.numRows()) {
123 const KokkosSparse::SparseRowViewConst<AMatrix>
A_row = m_A.rowConst(
lclRow);
127 Kokkos::parallel_reduce(
135 Kokkos::single(Kokkos::PerThread(
dev),
160chebyshev_kernel_vector(
const Scalar& alpha,
169 using execution_space =
typename AMatrix::execution_space;
171 if (A.numRows() == 0) {
176 int vector_length = -1;
179 const int64_t rows_per_team = KokkosSparse::Impl::spmv_launch_parameters<execution_space>(A.numRows(), A.nnz(),
rows_per_thread, team_size, vector_length);
182 using Kokkos::Dynamic;
183 using Kokkos::Schedule;
184 using Kokkos::Static;
185 using Kokkos::TeamPolicy;
195 policyDynamic = policy_type_dynamic(worksets, team_size, vector_length);
196 policyStatic = policy_type_static(worksets, team_size, vector_length);
200 using w_vec_type =
typename WVector::non_const_type;
201 using d_vec_type =
typename DVector::const_type;
202 using b_vec_type =
typename BVector::const_type;
203 using matrix_type = AMatrix;
204 using x_colMap_vec_type =
typename XVector_colMap::const_type;
205 using x_domMap_vec_type =
typename XVector_domMap::non_const_type;
206#if KOKKOS_VERSION >= 40799
207 using scalar_type =
typename KokkosKernels::ArithTraits<Scalar>::val_type;
209 using scalar_type =
typename Kokkos::ArithTraits<Scalar>::val_type;
212#if KOKKOS_VERSION >= 40799
213 if (beta == KokkosKernels::ArithTraits<Scalar>::zero()) {
215 if (beta == Kokkos::ArithTraits<Scalar>::zero()) {
217 constexpr bool use_beta =
false;
220 ChebyshevKernelVectorFunctor<w_vec_type, d_vec_type,
221 b_vec_type, matrix_type,
222 x_colMap_vec_type, x_domMap_vec_type,
226 functor_type func(alpha, w, d, b, A, x_colMap, x_domMap, beta, rows_per_team);
227 if (A.nnz() > 10000000)
228 Kokkos::parallel_for(kernel_label, policyDynamic, func);
230 Kokkos::parallel_for(kernel_label, policyStatic, func);
233 ChebyshevKernelVectorFunctor<w_vec_type, d_vec_type,
234 b_vec_type, matrix_type,
235 x_colMap_vec_type, x_domMap_vec_type,
239 functor_type func(alpha, w, d, b, A, x_colMap, x_domMap, beta, rows_per_team);
240 if (A.nnz() > 10000000)
241 Kokkos::parallel_for(kernel_label, policyDynamic, func);
243 Kokkos::parallel_for(kernel_label, policyStatic, func);
246 constexpr bool use_beta =
true;
249 ChebyshevKernelVectorFunctor<w_vec_type, d_vec_type,
250 b_vec_type, matrix_type,
251 x_colMap_vec_type, x_domMap_vec_type,
255 functor_type func(alpha, w, d, b, A, x_colMap, x_domMap, beta, rows_per_team);
256 if (A.nnz() > 10000000)
257 Kokkos::parallel_for(kernel_label, policyDynamic, func);
259 Kokkos::parallel_for(kernel_label, policyStatic, func);
262 ChebyshevKernelVectorFunctor<w_vec_type, d_vec_type,
263 b_vec_type, matrix_type,
264 x_colMap_vec_type, x_domMap_vec_type,
268 functor_type func(alpha, w, d, b, A, x_colMap, x_domMap, beta, rows_per_team);
269 if (A.nnz() > 10000000)
270 Kokkos::parallel_for(kernel_label, policyDynamic, func);
272 Kokkos::parallel_for(kernel_label, policyStatic, func);
279template <
class TpetraOperatorType>
280ChebyshevKernel<TpetraOperatorType>::
281 ChebyshevKernel(
const Teuchos::RCP<const operator_type>& A,
282 const bool useNativeSpMV)
283 : useNativeSpMV_(useNativeSpMV) {
287template <
class TpetraOperatorType>
288void ChebyshevKernel<TpetraOperatorType>::
289 setMatrix(
const Teuchos::RCP<const operator_type>& A) {
290 if (A_op_.get() != A.get()) {
294 V1_ = std::unique_ptr<multivector_type>(
nullptr);
296 using Teuchos::rcp_dynamic_cast;
297 Teuchos::RCP<const crs_matrix_type> A_crs =
298 rcp_dynamic_cast<const crs_matrix_type>(A);
299 if (A_crs.is_null()) {
300 A_crs_ = Teuchos::null;
301 imp_ = Teuchos::null;
302 exp_ = Teuchos::null;
305 TEUCHOS_ASSERT(A_crs->isFillComplete());
307 auto G = A_crs->getCrsGraph();
308 imp_ = G->getImporter();
309 exp_ = G->getExporter();
310 if (!imp_.is_null()) {
311 if (X_colMap_.get() ==
nullptr ||
312 !X_colMap_->getMap()->isSameAs(*(imp_->getTargetMap()))) {
313 X_colMap_ = std::unique_ptr<multivector_type>(
new multivector_type(imp_->getTargetMap(), 1));
321template <
class TpetraOperatorType>
322void ChebyshevKernel<TpetraOperatorType>::
323 setAuxiliaryVectors(
size_t numVectors) {
324 if ((V1_.get() ==
nullptr) || V1_->getNumVectors() != numVectors) {
325 using MV = multivector_type;
326 V1_ = std::unique_ptr<MV>(
new MV(A_op_->getRangeMap(), numVectors));
330template <
class TpetraOperatorType>
331void ChebyshevKernel<TpetraOperatorType>::
332 compute(multivector_type& W,
342 TEUCHOS_ASSERT(!A_crs_.is_null());
343 fusedCase(W, alpha, D_inv, B, *A_crs_, X, beta);
345 TEUCHOS_ASSERT(!A_op_.is_null());
346 unfusedCase(W, alpha, D_inv, B, *A_op_, X, beta);
350template <
class TpetraOperatorType>
351typename ChebyshevKernel<TpetraOperatorType>::multivector_type&
352ChebyshevKernel<TpetraOperatorType>::
353 importVector(multivector_type& X_domMap) {
354 if (imp_.is_null()) {
357 X_colMap_->doImport(X_domMap, *imp_, Tpetra::REPLACE);
362template <
class TpetraOperatorType>
363bool ChebyshevKernel<TpetraOperatorType>::
364 canFuse(
const multivector_type& B)
const {
370 return B.getNumVectors() == size_t(1) &&
375template <
class TpetraOperatorType>
376void ChebyshevKernel<TpetraOperatorType>::
377 unfusedCase(multivector_type& W,
381 const operator_type& A,
384 using STS = Teuchos::ScalarTraits<SC>;
385 setAuxiliaryVectors(B.getNumVectors());
387 const SC one = Teuchos::ScalarTraits<SC>::one();
390 Tpetra::deep_copy(*V1_, B);
391 A.apply(X, *V1_, Teuchos::NO_TRANS, -one, one);
394 W.elementWiseMultiply(alpha, D_inv, *V1_, beta);
397 X.update(STS::one(), W, STS::one());
400template <
class TpetraOperatorType>
401void ChebyshevKernel<TpetraOperatorType>::
402 fusedCase(multivector_type& W,
404 multivector_type& D_inv,
406 const crs_matrix_type& A,
409 multivector_type& X_colMap = importVector(X);
411 using Impl::chebyshev_kernel_vector;
412 using STS = Teuchos::ScalarTraits<SC>;
414 auto A_lcl = A.getLocalMatrixDevice();
416 auto Dinv_lcl = Kokkos::subview(D_inv.getLocalViewDevice(Tpetra::Access::ReadOnly), Kokkos::ALL(), 0);
417 auto B_lcl = Kokkos::subview(B.getLocalViewDevice(Tpetra::Access::ReadOnly), Kokkos::ALL(), 0);
418 auto X_domMap_lcl = Kokkos::subview(X.getLocalViewDevice(Tpetra::Access::ReadWrite), Kokkos::ALL(), 0);
419 auto X_colMap_lcl = Kokkos::subview(X_colMap.getLocalViewDevice(Tpetra::Access::ReadOnly), Kokkos::ALL(), 0);
421 const bool do_X_update = !imp_.is_null();
422 if (beta == STS::zero()) {
423 auto W_lcl = Kokkos::subview(W.getLocalViewDevice(Tpetra::Access::OverwriteAll), Kokkos::ALL(), 0);
424 chebyshev_kernel_vector(alpha, W_lcl, Dinv_lcl,
426 X_colMap_lcl, X_domMap_lcl,
430 auto W_lcl = Kokkos::subview(W.getLocalViewDevice(Tpetra::Access::ReadWrite), Kokkos::ALL(), 0);
431 chebyshev_kernel_vector(alpha, W_lcl, Dinv_lcl,
433 X_colMap_lcl, X_domMap_lcl,
438 X.update(STS::one(), W, STS::one());
444#define IFPACK2_DETAILS_CHEBYSHEVKERNEL_INSTANT(SC, LO, GO, NT) \
445 template class Ifpack2::Details::ChebyshevKernel<Tpetra::Operator<SC, LO, GO, NT> >;
Ifpack2's implementation of Trilinos::Details::LinearSolver interface.
Definition Ifpack2_Details_LinearSolver_decl.hpp:75
Ifpack2 implementation details.
Preconditioners and smoothers for Tpetra sparse matrices.
Definition Ifpack2_AdditiveSchwarz_decl.hpp:40
Functor for computing W := alpha * D * (B - A*X) + beta * W and X := X+W.
Definition Ifpack2_Details_ChebyshevKernel_def.hpp:45