
ORNL/TM-2017/350

ForTrilinos Design Document

Approved for public release.
Distribution is unlimited.

Mitchell Young (ORNL)
Seth Johnson (ORNL)
Andrey Prokopenko (ORNL)
Benjamin Collins (ORNL)
Katherine Evans (ORNL)
Mike Heroux (project PI) (SNL)

August 24, 2017

DOCUMENT AVAILABILITY
Reports produced after January 1, 1996, are generally available free via US Department of Energy
(DOE) SciTech Connect.

Website http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public from the
following source:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone 703-605-6000 (1-800-553-6847)
TDD 703-487-4639
Fax 703-605-6900
E-mail info@ntis.gov
Website http://www.ntis.gov/help/ordermethods.aspx

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange
representatives, and International Nuclear Information System representatives from the following
source:

Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831
Telephone 865-576-8401
Fax 865-576-5728
E-mail reports@osti.gov
Website http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal lia-
bility or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or rep-
resents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not nec-
essarily constitute or imply its endorsement, recommendation, or fa-
voring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

mailto:info@ntis.gov
mailto:http://www.ntis.gov/help/ordermethods.aspx
mailto:reports@osti.gov

ORNL/TM-2017/350

COMPUTER SCIENCE AND ENGINEERING DIVSION

FORTRILINOS DESIGN DOCUMENT

Mitchell Young (ORNL)
Seth Johnson (ORNL)

Andrey Prokopenko (ORNL)
Benjamin Collins (ORNL)
Katherine Evans (ORNL)

Mike Heroux (project PI) (SNL)

Date Published: August 24, 2017

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, TN 37831-6283
managed by

UT-Battelle, LLC
for the

US DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

Contents

1 INTRODUCTION . 3
2 USING FORTRILINOS . 5

2.1 OBTAINING AND BUILDING FORTRILINOS . 5
2.2 BUILDING PROGRAMS WITH FORTRILINOS . 6

3 GENERAL PRINCIPLES AND THE FORTEUCHOS MODULE 7
3.1 OBJECT MODEL . 7
3.2 ERROR HANDLING . 7
3.3 FORTEUCHOS MODULE . 7

4 SIMPLIFIED TRILINOS INTERFACE . 11
4.1 LINEAR SOLVERS . 11
4.2 EIGENSOLVERS . 16
4.3 NONLINEAR SOLVERS . 18

5 DIRECT TRILINOS WRAPPERS . 19
6 CONCLUSIONS . 21
ACKNOWLEDGMENTS . 23

iii

With the development of a Fortran Interface to Trilinos, ForTrilinos, modelers using modern Fortran will be
able to provide their codes the capability to use solvers and other capabilities on exascale machines via a
straightforward infrastructure that accesses Trilinos. This document outlines what Fortrilinos does and
explains briefly how it works. We show it provides a general access to packages via an entry point and uses
an xml file from fortran code. With the first release, ForTrilinos will enable Teuchos to take xml parameter
lists from Fortran code and set up data structures. It will provide access to linear solvers and eigensolvers.
Several examples are provided to illustrate the capabilities in practice. We explain what the user should
have already with their code and what Trilinos provides and returns to the Fortran code. We provide
information about the build process for ForTrilinos, with a practical example. In future releases, nonlinear
solvers, time iteration, advanced preconditioning techniques, and inversion of control (IoC), to enable
callbacks to Fortran routines, will be available.

1

1. INTRODUCTION

The ForTrilinos project [Prokopenko et al., 2017] aims to provide Fortran developers with access to the
Trilinos [Heroux et al., 2005] scientific library. This design document provides information about the plans
to develop ForTrilinos to be maximally useful for Fortran codes that would like to access Trilinos.

Trilinos functionality will be exposed gradually, as our tooling becomes more sophisticated. First, popular
high-level functionality will be provided, giving access to the Trilinos linear solvers, eigen solvers, and
non-linear solvers. These will be implemented with a simplified interface, hiding much of the internal
complexity of the Trilinos ecosystem from the end user. These are discussed in Section 4. Following the
simplified interfaces, we will target Trilinos packages individually. Important user-facing objects and
interfaces from these packages will be wrapped in Fortran derived types, giving end users more flexibly
and fine-grained control. This functionality is still under development, and no specific interface is
proposed, but some discussion is provided in Section 5.

The goals of ForTrilinos will be achieved through the development of Fortran modules that “wrap” Trilinos
code by adapting the interface and calling the Trilinos code under the hood. These wrappers will rely
heavily upon the C interoperability (ISO_C_BINDING) features introduced in the Fortran 2003 standard.
Being written in C++, the Trilinos interfaces must also be adapted using an intermediate C interface that
can be targeted by the Fortran wrapper code.

Throughout the process of generating the wrappers, our goal is to satisfy the following objectives:

• Familiarity

Expose Trilinos functionality using an idiomatic Fortran interface. Existing Fortran users should find
using ForTrilinos familiar.

• Performance

Due to the nature of interfacing between Fortran and C++ code, there will necessarily be some
impact on performance. However, performance impacts should be minimized as much as possible.

The initial version of ForTrilinos [Morris et al., 2012] wraps components of Trilinos in Fortran via some
automated tooling, but is still largely manual. The manual aspect requires ongoing maintenance and
provides little economy of scale, so the introduction of new Trilinos packages is time-consuming.

In response, the next generation of ForTrilinos leverages SWIG (Simplified Wrapper and Interface
Generator) to maximize the automatic generation of ForTrilinos wrapper code. SWIG is designed to
automate the process of exposing C++ code to foreign languages, such as Perl or Python. Applied to
Fortran wrappers, SWIG minimizes future development and maintenance costs, and enables
straightforward expansion to more Trilinos packages. In many cases, updates to Trilinos APIs will only
involve re-running the SWIG tool to generate new wrapper code.

A significant portion of the new ForTrilinos effort involves the development of Fortran support in SWIG,
which is being developed from scratch as part of this project. Although this is time intensive to accomplish,
as support for more C++ features is added to the SWIG Fortran module, it will become easier to wrap more
Trilinos capability, and the set of supported features can expand. To illustrate its utility, a simplified
Trilinos interface within ForTrilinos has been provided to show basic functionality:

• Interaction with Teuchos parameter lists, both through a direct interface and using XML files.

• A simplified interface to the Stratimikos package for posing and solving sparse linear systems.

3

https://github.com/Trilinos/ForTrilinos
http://swig.org

A similar simplified interfaces to access the Anasazi package (Ax = λx and Ax = λBx) and non-linear
solver capabilities is also presented.

Near term developments beyond this basic functionality include direct wrappers for individual Trilinos
packages. Some of these features introduce practical concerns which will require creative solutions. Chief
among them is memory management of the C++ objects that are referenced by the Fortran proxy objects,
which are discussed more in Section 3.1. Native Trilinos relies heavily on the scoping rules of C++ to
automatically handle safely destroying objects and freeing the resources associated with them. Reference
counting is often used to permit different scopes to share references to objects, freeing them when no
references to that object remain. The corresponding Fortran proxy objects will need to interact reliably
with this mechanism to avoid memory leaks and other issues. This is an issue that received much attention
as part of the previous incarnation of ForTrilinos[Rouson and Morris, 2012], and we hope to incorporate
some of their findings in our SWIG-based approach.

Facilities for inversion of control (IoC), allowing the Trilinos C++ code to call Fortran functions, will be
needed to implement general non-linear solvers and preconditioners.

4

2. USING FORTRILINOS

2.1 OBTAINING AND BUILDING FORTRILINOS

ForTrilinos is an external Trilinos package, so it is built in the source tree together with regular Trilinos
packages but it is not distributed with the main Trilinos repository.

To obtain and build ForTrilinos, clone the main Trilinos repository into a directory, here referred to as
$TRILINOS_DIR:

git clone https://github.com/trilinos/Trilinos.git $TRILINOS_DIR

Into a separate directory, $FORTRILINOS_DIR, clone the ForTrilinos repository:

git clone https://github.com/trilinos/ForTrilinos.git $FORTRILINOS_DIR

Now create a symlink to ForTrilinos in the Trilinos packages directory:

cd $TRILINOS_DIR/packages
ln -s $FORTRLILINOS_DIR .

ForTrilinos only has explicit dependencies on Fortran and SWIG. However, as it wraps other Trilinos
packages, it inherits their dependencies. To build and use the ForTrilinos code itself, a Fortran 2003
compliant Fortran compiler is required.∗

Trilinos and ForTrilinos can now be configured and built. Here is an example of a configuration script for
Trilinos to build ForTrilinos and its dependencies:

#!/usr/bin/env/bash

EXTRA_ARGS=$@

ARGS=(
-D CMAKE_BUILD_TYPE=Debug

-D BUILD_SHARED_LIBS=ON

Install path
-D CMAKE_INSTALL_PREFIX=${TRILINOS_INSTALL_DIR}

COMPILERS AND FLAGS
-D Trilinos_ENABLE_Fortran=ON
-D CMAKE_CXX_FLAGS="-Wall -Wpedantic"

TPLs
-D TPL_ENABLE_MPI=ON
-D TPL_ENABLE_BLAS=ON
-D TPL_ENABLE_LAPACK=ON

ETI
-D Trilinos_ENABLE_EXPLICIT_INSTANTIATION=ON

PACKAGES CONFIGURATION
-D Trilinos_ENABLE_ALL_PACKAGES=OFF
-D Trilinos_ENABLE_ALL_OPTIONAL_PACKAGES=OFF

∗Recent versions of Cray, Intel, IBM, PGI and GNU fully support Fortran 2003. NAG as of version 6.1 lacks support for derived
type input/output.

5

-D Trilinos_ENABLE_TESTS=OFF
-D Trilinos_ENABLE_EXAMPLES=OFF

-D Trilinos_ENABLE_Amesos=ON
-D Trilinos_ENABLE_AztecOO=ON
-D Trilinos_ENABLE_Belos=ON
-D Trilinos_ENABLE_Epetra=ON
-D Trilinos_ENABLE_EpetraExt=ON
-D Trilinos_ENABLE_Ifpack=ON
-D Trilinos_ENABLE_Ifpack2=ON
-D Trilinos_ENABLE_Stratimikos=ON
-D Trilinos_ENABLE_Tpetra=ON
-D Trilinos_ENABLE_Thyra=ON

FORTRILINOS
-D Trilinos_ENABLE_CTrilinos=ON
-D Trilinos_ENABLE_ForTrilinos=ON

-D ForTrilinos_ENABLE_EXAMPLES=ON
-D ForTrilinos_ENABLE_TESTS=ON

)
cmake "${ARGS[@]}" $EXTRA_ARGS $TRILINOS_DIR

do–configure.sh

Optionally, an install path may be specified with the -D CMAKE_INSTALL_PREFIX command line
argument, which is useful on systems where the default install path is not writeable by the user. We assume
that the environment variable $TRILINOS_INSTALL_DIR is used.

Using such a script, ForTrilinos can be configured, built and installed with:

mkdir build && cd build
./do-configure
make
make install

For more information on how to configure Trilinos and its dependencies, please refer to Trilinos
documentation.

2.2 BUILDING PROGRAMS WITH FORTRILINOS

In many cases, ForTrilinos can simply be built as a library dependency of another project. After building
ForTrilinos as described above, Fortran module files and shared object files should be located in the
specified install directory, $TRILINOS_INSTALL_DIR. If Trilinos was not installed to the default system
path, $TRILINOS_INSTALL_DIR/include must be specified as a search directory for module files
(-I$TRILINOS_INSTALL_DIR/include in gfortran), and $TRILINOS_INSTALL_DIR/lib as a library
search directory to the linker (-I$TRILINOS_INSTALL_DIR/lib).

6

3. GENERAL PRINCIPLES AND THE FORTEUCHOS MODULE

3.1 OBJECT MODEL

A goal of the ForTrilinos project is to provide Fortran interfaces to Trilinos that match as closely as
possible to the existing interfaces of their C++ counterparts.

In general, this means defining Fortran derived types with type-bound procedures that map to methods of
the corresponding C++ classes. We tend to refer to these as “proxy types.” On the Fortran side, the proxy
types store a pointer to an underlying C++ object, which is in turn typically stored in a reference-counted
pointer (RCP) [Bartlett, 2010]. Storing a reference to an object created and allocated on the C++ side is
necessary because in most cases, Trilinos classes are not directly interoperable with Fortran.

Since each ForTrilinos proxy object is actually a pointer to a C++ object, it is necessary to explicitly
allocate and free the memory associated with that object. Most ForTrilinos types provide foo%create()
and foo%release() type-bound procedures to allocate/construct and destroy/free the underlying C++

object, respectively. The foo%create() procedure may accept arguments, which are passed to the object’s
constructor.

The Teuchos::RCP is used under the hood because most of the Trilinos interfaces use this class to pass
objects around. Most type-bound procedures on the Fortran objects follow a pattern of passing the
arguments and internal pointer to an extern "C" function, which dereferences the pointer and calls the
corresponding method on the pointed-to C++ class with the provided arguments. Interacting with a
ForTrilinos object before create()-ing it will likely result in errors, or undefined behavior. Forgetting to
clear() a ForTrilinos object will usually lead to memory leaks.

3.2 ERROR HANDLING

ForTrilinos defines a Fortran module integer ierr. SWIG will catch any exceptions thrown by Trilinos and
will set that code as well as a string serr with the exception message. The error can be cleared by the
fortran module by resetting ierr to zero; otherwise, the next time a function is called, the error will be
rethrown as “Uncaught exception: msg”.

Below is an example of how it is used in a Fortran code:

call some_function()
if (ierr /= 0) then
write(*,*) "Got error ", ierr, ":", trim(serr)
stop 1

endif

3.3 FORTEUCHOS MODULE

Many components of Trilinos rely upon utility code provided by the Teuchos package. The Teuchos
package provides a parameter list class, which is used to configure many of the solvers provided by the
other Trilinos packages. ForTrilinos exposes the Teuchos parameter list in the ForTeuchos module, which
provides two methods for interacting with these parameter lists. A direct interface allows a Fortran

7

developer to interact with the parameter list programmatically using type-bound procedures on the
ParameterList derived type. Alternatively, ParameterLists may be initialized using an XML file
containing relevant parameters.

For example, the Stratimikos package provides a unified interface to many of the linear solvers in Trilinos,
and relies heavily upon the parameter list for configuration. Below is an example of an XML file that
would configure Stratimikos to use the AztecOO solver and Ifpack preconditioner:

<ParameterList>
<Parameter name="Linear Solver Type" type="string" value="AztecOO"/>
<ParameterList name="Linear Solver Types">
<ParameterList name="AztecOO">
<ParameterList name="Forward Solve">
<ParameterList name="AztecOO Settings">
<Parameter name="Aztec Solver" type="string" value="GMRES"/>
<Parameter name="Convergence Test" type="string" value="r0"/>
<Parameter name="Size of Krylov Subspace" type="int" value="300"/>

</ParameterList>
<Parameter name="Max Iterations" type="int" value="400"/>
<Parameter name="Tolerance" type="double" value="1e-13"/>

</ParameterList>
<Parameter name="Output Every RHS" type="bool" value="1"/>

</ParameterList>
</ParameterList>
<Parameter name="Preconditioner Type" type="string" value="Ifpack"/>
<ParameterList name="Preconditioner Types">
<ParameterList name="Ifpack">
<Parameter name="Prec Type" type="string" value="ILU"/>
<Parameter name="Overlap" type="int" value="1"/>
<ParameterList name="Ifpack Settings">
<Parameter name="fact: level-of-fill" type="int" value="2"/>

</ParameterList>
</ParameterList>

</ParameterList>
</ParameterList>

example_plist.xml

The program below demonstrates how to use the above XML populate a ForTeuchos ParameterList and
interact with it.

program import_xml
use ForTeuchos

implicit none

type(ParameterList) :: plist, sublist, sublist2
logical :: some_bool
integer :: max_iterations

call plist%create("base")
call sublist%create("sublist")

call load_from_xml(plist, "example_plist.xml")

call plist%print()

write(*,*)"done printing base list"

8

call plist%get("Linear Solver Types", sublist)
call sublist%get("AztecOO", sublist)
call sublist%get("Forward Solve", sublist)
call sublist%print()
call sublist%get("Max Iterations", max_iterations)

write(*,*)"max iterations:", max_iterations

call plist%release()

end program

9

4. SIMPLIFIED TRILINOS INTERFACE

The goal of the simplified interface is to expose the high level Trilinos functionality that is easy to
understand for Fortran users. Rather than expose the low-level API for many Trilinos structures, the
simplified interface provides a small interface to full capability areas of Trilinos through a single entry
point. This is done through the use of an intermediate C++ code (hidden from Fortran users and Trilinos)
that hides the Trilinos functionality and class interactions.

So far, the implemented simplified interfaces expose only linear solvers (section 4.1). We are also working
on eigensolvers interface (section 4.2). We also consider interfaces for the nonlinear solvers
(section 4.3).

4.1 LINEAR SOLVERS

The linear solvers interface has been partially implemented, and are operational, at the beta testing level.
The Fortran interface consists of a single class with the following API:

• create()

Allocate a new handle. Each handle corresponds to a single linear system. This allocation must be
done before the handle can be used. Multiple handles may be present at the same time.

• release()

Free resources associated with a specific handle. Does not affect any other handles. A call to create()
should always be paired with a corresponding release() to avoid memory leaks.

• init(), init(comm)

Initialize handle. The second variant takes in an MPI communicator.

• setup_matrix(row_inds, row_ptrs, col_inds, values)

Specify a matrix for the linear system. For a serial run this is the full system matrix. For a parallel
run, this is a subset of rows of the full matrix that are allocated to a single processor. We call it local
matrix. The matrix is required to be provided in a standard CSR† format:

– row_inds (in)

The global indices of the local matrix rows allocated to this processor. It is an integer array of
size num_rows.

– row_ptrs (in)

Row offsets in the local matrix (the first array in CSR). It is an integer array of size
num_rows+1.

– col_inds (in)

Global column indices in the local matrix (the second array in CSR). It is an integer array of
size num_nnz (which must be equal to row_ptrs(num_rows+1)).

†Compressed Sparse Row, also known as CRS: Compressed Row Storage

11

– values (in)

Values in the local matrix (the third array in CSR). It is a double array of size num_nnz.

• setup_operator(row_inds, func_ptr)

An alternative way (to setup_matrix) to specify the system. Instead of providing an explicit matrix, a
user instead provides a function pointer that implements matrix-vector multiplication. The current
API for it is

subroutine matvec(n, x, y) BIND(C)
use, intrinsic :: ISO_C_BINDING
integer(c_int), intent(in), value :: n
real(c_double), dimension(:), intent(in) :: x(*)
real(c_double), dimension(:), intent(out) :: y(*)
...

end subroutine

row_inds are the same as in setup_matrix.

• setup_solver(param_list)

Specify parameters for the solver. It provides a full access to linear solver algorithms in Trilinos that
provide Stratimikos adapters. These include:

– Krylov iterative methods

CG, GMRES, . . .

– Classic preconditioners

Jacobi, Gauss-Seidel, SOR

– ILU preconditioners

Several variants including ILU(k), ILUT

– Multigrid preconditioners

For more information about available preconditioners, please consult Ifpack2 [Prokopenko et al.,
2016] and MueLu [Prokopenko et al., 2014] user manuals.

Note that if a user provides an operator through setup_operator call, the preconditioner functionality
is no longer available as it requires an explicit matrix.

This function must be called after the matrix or the operator has been setup.

• solve(rhs, lhs)

Solve the linear system.

– rhs (in)

The local part of the right hand side of the system. It is a double array of size size (which must
be the same as num_rows in setup_matrix or setup_operator).

12

– lhs (out)

The local part of the solution side of the system. It is a double array of size size.

This function must be called after setup_solver. It can be called multiple times to solve multiple
systems with the same operator.

Below is an example of the linear solver interface in use (note, it uses a slightly different interface where
for all fortran arrays we also provide array sizes; this will not be necessary in the final interface, but this is
the way current implementation works). The problem uses the following XML file to populate the
parameter list used to configure the problem:

<ParameterList>
<Parameter name="Linear Solver Type" type="string" value="Belos"/>
<ParameterList name="Linear Solver Types">
<ParameterList name="Belos">
<Parameter name="Solver Type" type="string" value="Block GMRES"/>
<ParameterList name="Solver Types">
<ParameterList name="Block GMRES">
<Parameter name="Block Size" type="int" value="1"/>
<Parameter name="Convergence Tolerance" type="double" value="1e-4"/>
<Parameter name="Maximum Iterations" type="int" value="20"/>
<Parameter name="Output Frequency" type="int" value="1"/>
<Parameter name="Show Maximum Residual Norm Only" type="bool" value="1"/>

</ParameterList>
</ParameterList>

</ParameterList>
</ParameterList>

<Parameter name="Preconditioner Type" type="string" value="Ifpack2"/>
</ParameterList>

narrative/simple_tridiag.xml

program main

#include "ForTrilinosSimpleInterface_config.hpp"

use ISO_FORTRAN_ENV
use, intrinsic :: ISO_C_BINDING
use fortrilinos
use x
use forteuchos

#ifdef HAVE_MPI
use mpi

#endif
implicit none

integer(c_int) :: i
integer(c_int) :: n, nnz;
integer(c_int) :: my_rank, num_procs

integer(c_int), dimension(:), allocatable :: row_inds, col_inds, row_ptrs
real(c_double), dimension(:), allocatable :: lhs, rhs, values

integer(c_int) :: cur_pos, offset
real(c_double) :: norm

13

type(ParameterList) :: plist
type(TrilinosHandle) :: tri_handle

n = 50
nnz = 3*n

my_rank = 0
num_procs = 1

#ifdef HAVE_MPI
! Initialize MPI subsystem
call MPI_INIT(ierr)
if (ierr /= 0) then
write(*,*) "MPI failed to init"
stop 1

endif

call MPI_COMM_RANK(MPI_COMM_WORLD , my_rank, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD , num_procs , ierr)
EXPECT_EQ(0, ierr)

#endif

! Read in the parameterList
call plist%create("Stratimikos")
call load_from_xml(plist, "stratimikos.xml")

if (ierr /= 0) then
write(*,*) "Got error ", ierr, ":", trim(serr)
stop 1

endif

! --
! Construct tri-diagonal matrix, and rhs
allocate(row_inds(n))
allocate(row_ptrs(n+1))
allocate(col_inds(nnz))
allocate(values(nnz))
row_ptrs(1) = 0
cur_pos = 1
offset = n * my_rank
do i = 1, n
if (i .ne. 1 .or. my_rank > 0) then
col_inds(cur_pos) = offset + i-1
values (cur_pos) = -1.0
cur_pos = cur_pos + 1

end if
col_inds(cur_pos) = offset + i
values (cur_pos) = 2.0
cur_pos = cur_pos + 1
if (i .ne. n .or. my_rank .ne. num_procs -1) then
col_inds(cur_pos) = offset + i+1
values (cur_pos) = -1.0
cur_pos = cur_pos + 1

end if
row_ptrs(i+1) = cur_pos -1;

row_inds(i) = offset + i
end do
nnz = cur_pos -1

14

allocate(lhs(n))
do i = 1, n
lhs(i) = 0.0

end do

! The solution lhs(i) = i-1
allocate(rhs(n))
if (my_rank > 0) then
rhs(1) = 0.0

else
rhs(1) = -1.0

end if
if (my_rank .ne. num_procs -1) then
rhs(n) = 0.0

else
rhs(n) = offset+n

end if
do i = 2, n-1
rhs(i) = 0.0

end do

call tri_handle%create()
if (ierr /= 0) then
write(*,*) "Got error ", ierr, ": ", trim(serr)
stop 1

endif

! --
! Setup ForTrilinos handle and solve
! --
! Step 1: initialize a handle to the simplified linear solver interface

#ifdef HAVE_MPI
call tri_handle%init(MPI_COMM_WORLD)

#else
call tri_handle%init()

#endif
if (ierr /= 0) then
write(*,*) "Got error ", ierr, ": ", trim(serr)
stop 1

endif

! Step 2: setup the problem
call tri_handle%setup_matrix(n, row_inds , row_ptrs , nnz, col_inds , values)
if (ierr /= 0) then
write(*,*) "Got error ", ierr, ": ", trim(serr)
stop 1

endif

! Step 3: setup the solver
call tri_handle%setup_solver(plist)
if (ierr /= 0) then
write(*,*) "Got error ", ierr, ": ", trim(serr)
stop 1

endif

! Step 4: solve the system
call tri_handle%solve(n, rhs, lhs)

15

if (ierr /= 0) then
write(*,*) "Got error ", ierr, ": ", trim(serr)
stop 1

endif

! Check the solution
norm = 0.0
do i = 1, n
norm = norm + (lhs(i) - (offset+i-1))*(lhs(i) - (offset+i-1));

end do
norm = sqrt(norm);

! Step 5: clean up
call tri_handle%finalize()
if (ierr /= 0) then
write(*,*) "Got error ", ierr, ": ", trim(serr)
stop 1

endif

! --
call plist%release()
call tri_handle%release()
if (ierr /= 0) then
write(*,*) "Got error ", ierr, ":", trim(serr)
stop 1

endif

#ifdef HAVE_MPI
! Finalize MPI must be called after releasing all handles
call MPI_FINALIZE(ierr)
EXPECT_EQ(0, ierr)

#endif

end program

narrative/simple_tridiag_example.f90

Current API questions/concerns:

• No API to check the status of the solve. Did it converge?

• No way to get back the number of iterations. Do we need it for the simple API?

• All the input is controlled through the parameter list. Do we want to provide an easier way to set
some common parameters, like convergence tolerance?

• How many different interfaces should we have, and how complicated?

• do we separate all the different interfaces or have one that works for all?

4.2 EIGENSOLVERS

Eigensolvers, by their nature, are very similar to linear systems. There are two main differences. First,
instead of solving a linear system by providing a right hand side and producing a solution, one instead asks
for a number of eigenvalues and associated eigenvectors to be produced. Second, in the case of generalized

16

eigenvalue problems, the problem is represented by two matrices, rather than just one. As such, the
eigensolver interface is very similar to the linear solvers. The eigensolver interface drives the Anasazi
Trilinos package, which can solve typical eigenvalue problems (Ax = λx) and generalized eigenvalue
problems (Ax = λBx). Anasazi implements a handful of algorithms, each with different benefits and
constraints; refer to the Anasazi documentation to determine which algorithm best suits a given problem.
The desired solver must be selected using the parameter list passed to the setup_solver() function,
along with relevant parameters to configure the selected solver.

• create()

Allocate a new handle. Each handle corresponds to a single eigenvalue problem. This allocation
must be done before the handle can be used. Multiple handles may be present at the same time.

• release()

Free resources associated with a specific handle. Does not affect any other handles. A call to create()
should always be paired with a corresponding release() to avoid memory leaks.

• init(), init(comm)

Initialize handle. The second variant takes in an MPI communicator.

• setup_matrix(row_inds, row_ptrs, col_inds, values)

Specify a matrix (A in Ax = λx or Ax = λBx) for the eigenvalue problem.

Refer to setup_matrix() from Section 4.1 for more details.

• setup_operator(row_inds, func_ptr) An alternative way to represent the system. Refer to
setup_operator in Section 4.1 for more details.

• setup_matrix_rhs(row_inds, row_ptrs, col_inds, values)

Specify a matrix for the right-hand side of a generalized eigenvalue problem (B in Ax = λBx).

• setup_operator_rhs(row_inds, func_ptr)

An alternative way to specify the RHS system discussed in setup_matrix_rhs.

• setup_solver(param_list)

Specify parameters for the solver. The supplied parameter list should contain the following
parameters:

– “Solver Type”: The solver algorithm to use. This can be one of the solvers implemented in the
Anasazi package. For example “Block Krylov-Schur” or “Generalized Davidson”.

– “NumEV”: An integer specifying the number of eigenvalues to seek. These will be ordered
based on the “which” parameter specified on the solver-specific parameter list.

– “[Solver Type]”: A parameter sublist containing appropriate settings for the selected solver
type. The name of the sublist should match the name of the solver selected. Refer to the
Anasazi documentation for the list of relevant parameters for each solver (e.g. Block
Davidson).

– “Preconditioner Type”: Optional. A preconditioner type to use. This can be any of those
offered by a Trilinos package, such as “Ifpack” or “ML.”

17

https://trilinos.org/packages/anasazi/
https://trilinos.org/docs/dev/packages/anasazi/doc/html/classAnasazi_1_1BlockDavidsonSolMgr.html#a0ff629154f4d85f10fe2adbb378d03d9
https://trilinos.org/docs/dev/packages/anasazi/doc/html/classAnasazi_1_1BlockDavidsonSolMgr.html#a0ff629154f4d85f10fe2adbb378d03d9

– “[Preconditioner Type]”: Optional. A parameter sublist containing appropriate settings for the
selected preconditioner, if any.

• solve(evals, evecs), solve(evals, evecs, eguess)

Solve the eigenvalue problem, returning all requested eigen pairs. The second variant allows an
initial guess to be supplied for each requested eigenvector

– evals (out)

A pointer to the requested eigenvalues. The passed pointer will be associated with data
allocated by ForTrilinos.

– evecs (out)

A two-dimensional pointer to the requested eigenvectors. Individual eigenvectors may be
obtained by evecs(:, i). The passed pointer will be assiociated with data allocated by
ForTrilinos.

– eguess (in)

A pointer(local_size, nev) to an array of the local part of the initial guess to use. The
pointer should be sized such that local_size is the size of the local part of the eigenvectors
and nev is the number of eigen pairs that are being solved for.

This function must be called after setup_solver.

4.3 NONLINEAR SOLVERS

We would also like to provide a simplified nonlinear solver interface. The main difficulty in designing such
an interface is how to pass a nonlinear operator to Trilinos. This will require a proper implementation of the
Inversion-of-Control (IoC). Although we have plans to implement wrappers within ForTrilinos soon, this
document does not address this strategy. A follow-on design document with ths scope is planned.

18

5. DIRECT TRILINOS WRAPPERS

The simplified interface sacrifices much of the versatility of the Trilinos library to provide an easier-to-use
approach for common use cases. For more advanced applications, it is useful to have direct access to the
Trilinos packages, and the classes that they comprise. Once the SWIG Fortran capabilities evolve to a point
where it becomes possible, selected Trilinos classes will be exposed to Fortran developers directly. Due to
fundamental differences between Fortran and C++, it will not be possible or desirable to achieve a
one-to-one correspondence between the C++ classes and wrapped Fortran derived types.

At this point it is too early to propose specific interfaces for individual Trilinos packages. However, we
seek to establish package priorities to guide our efforts going forward. Below is a short list of Trilinos
packages listed in order of general utility and overall priority. User interest in any package not on this list
would make excellent feedback.

1. Teuchos (partially implemented)

Teuchos is a support package in Trilinos. It provides a lot of auxiliary structures used throughout
such as parameter lists. A subset of this functionality will be exposed to Fortran users.

2. Epetra

Epetra is the older version of Tpetra. It is in maintenance mode, and no more development is being
done. However, it is still heavily used by many people. It is unclear if it is worth for ForTrilinos to
provide an interface to it if we provide an interface to Tpetra.

3. Tpetra

Tpetra implements distributed linear algebra objects such as matrices and vectors. Our plan is to
expose a significant part of this functionality, helping Fortran users to assemble matrices and vectors
in parallel, and allowing access to certain communication patterns.

4. Stratimikos

Stratimikos provides a single interface to many of the linear solvers and preconditioners provided by
Trilinos. This package is already used under the hood for the simplified linear solver interface
described in Section 4.1, though wrapping it directly may prove useful for some users.

5. Anasazi

Anasazi provides eigenvalue solvers for large, distributed matrices. It is already being used internally
by the simplified eigensolver interface described in Section 4.2.

6. Kokkos

Kokkos is the X in the MPI+X programming paradigm, and is heavily used by Tpetra underneath. It
is also very suitable to be used on its own to provide on-node performance. ForTrilinos may benefit
from exposing some of its functionality, however it may pose a significant challenge due do the
advanced concepts used in the package (heavy template metaprogramming, C++11 requirement).
ForTrilinos may provide a simplified functionality that wraps specific instances of Kokkos::View for
certain template parameters.

7. Other packages:

• Intrepid2 (discretization)

19

• Zoltan2 (repartitioning)

• SEACAS (I/O)

20

6. CONCLUSIONS

The ForTrilinos project aims to expose the power of the Trilinos ecosystem to Fortran developers in a
manner that should be very accessible and familiar. This will be achieved by using tools developed as part
of the SWIG system, reducing the cost of development and continued maintenance of the interfaces.

Simplified interfaces have been proposed to provide access to fundamental Trilinos features. The
developers welcome input from the community, and all comments and suggestions regarding the proposed
interfaces are welcome.

ForTrilinos development is ongoing. As the SWIG tools mature, more fine-grained interfaces to the
underlying Trilinos packages will be proposed, as well as facilities to enable advanced features such as
inversion of control, which is a necessary component for many non-linear and general-purpose
solvers.

Updated versions of this document will be made available, as user comments are addressed and more
functionality is added.

21

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of
the U.S. Department of Energy Office of Science and the National Nuclear Security Administration. This
manuscript has been authored by UT-Battelle, LLC and used resources of the National Center for
Computational Sciences at Oak Ridge National Laboratory, both of which are supported by the Office of
Science of the U.S. Department of Energy under Contract No.DE-AC05-00OR22725. The United States
Government retains and the publisher, by accepting the article for publication, acknowledges that the
United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of this manuscript, or allow others to do so, for United States Government
purposes.

23

REFERENCES

R. A. Bartlett. Teuchos::RCP beginner’s guide. Technical Report SAND2004-3268, Sandia National Labs,
2010.

M. A. Heroux, R. A. Bartlett, V. E. Howe, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long,
R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring, and
A. Williams. An overview of the Trilinos project. ACM Trans. Math. Soft., 31(3):397–423, 2005.

K. Morris, M. N. L. D.W.I. Rouson, and S. Filippone. Exploring capabilities within ForTrilinos by solving
the 3D burgers equation. Sci. Programming, 20(3):275–292, 2012.

A. Prokopenko, J. J. Hu, T. A. Wiesner, C. M. Siefert, and R. S. Tuminaro. MueLu User’s Guide 1.0.
Technical Report SAND2014-18874, Sandia National Labs, 2014.

A. Prokopenko, C. M. Siefert, J. J. Hu, M. Hoemmen, and A. Klinvex. Ifpack2 User’s Guide 1.0. Technical
Report SAND2016-5338, Sandia National Labs, 2016.

A. Prokopenko, S. Johnson, M. Young, K. Evans, M. Heroux, and B. Collins. Fortrilinos code base.
https://github.com/Trilinos/ForTrilinos, 2017.

D. Rouson and K. Morris. This isn’t your parents’ Fortran: Managing C++ objects with modern Fortran.
Computing in Science and Engineering, 14:46–54, 2012. doi: 10.1109/MCSE.2012.33.

25

	Introduction
	Using ForTrilinos
	Obtaining and Building ForTrilinos
	Building Programs with ForTrilinos

	General Principles and the ForTeuchos Module
	Object Model
	Error handling
	ForTeuchos Module

	Simplified Trilinos Interface
	Linear Solvers
	Eigensolvers
	Nonlinear Solvers

	Direct Trilinos Wrappers
	Conclusions
	Acknowledgments

